Case (b)	$L = \pm \omega$	(a) $Im(6.35)$
Subface	$L = +\omega$	
$\frac{1}{100}$	$\frac{f(x)}{g'(x)} = +\infty$	$implios$ that
$\frac{1}{100}$	$\frac{1}{100}$	$\frac{1}{100}$
and $lim(1)$	$\frac{1}{100} - \frac{1}{100} > M$	$H \alpha < d < \beta < 2 + \delta$
As in $cone(\alpha)$, $\frac{1}{100} + \frac{1}{100} = +\infty$ implies		
$\exists c \times c_1 \in (a, a + \delta) \text{ such that}$		
$\begin{array}{ccccccc} a < c_1 < c < a + \delta \\ a < c_1 < c < a + \delta & a + \delta &$		

$$
\Rightarrow \frac{f(\alpha)}{g(\alpha)} > \frac{1}{2}M + \frac{f(c)}{g(\alpha)} > \frac{1}{2}M - \frac{1}{2}
$$

$$
= \frac{1}{2}(M-1) \qquad \forall \alpha \in (a, c_1)
$$

Since M>1 a arbitrary, this shows that

\n
$$
\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = +\infty
$$
\nSubline of

\n
$$
\int_{0}^{u} L = -\infty'' \quad \text{is similar,}
$$
\nSubline of

\n
$$
\int_{0}^{u} L = -\infty'' \quad \text{is similar,}
$$

$$
\underbrace{ag6.3.6}_{(a)} \quad \text{lim} \quad \underbrace{Au} \times \underbrace{du} \times
$$
\n
$$
\text{if } (x) = lu \times \text{ has } \text{divivative} \quad f(x) = \frac{1}{x} \quad \text{on } (0, \infty)
$$
\n
$$
\text{if } g(x) = x \quad \text{has } \text{divivative } g'(x) = 1 + 0 \quad \text{on } (0, \infty)
$$

was divide the
$$
g(x) = 1 \neq 0
$$
 on $(0, \infty)$

$$
\bullet \quad \lim_{x \to \infty} \mathcal{G}(x) = +\infty
$$

$$
\oint_{x\to\infty} \frac{f'(x)}{g'(x)} = \lim_{x\to\infty} \frac{1/x}{1} = 0
$$

: L'Hospital Rule II => lui lux=0.

(Voully, one simply write $\lim_{x\to\infty}\frac{\ell x}{x} = \lim_{x\to\infty}\frac{\pm}{1} = 0$)

(b)
$$
\lim_{x\to\infty} e^{x} x^{2} = \lim_{x\to\infty} \frac{x^{2}}{e^{x}}
$$

\n• $(x^{2})^{2} = 2x$ $\forall x$
\n• $(e^{x})^{2} = e^{x} \pm 0$, $\forall x$
\n• $e^{x} \rightarrow +\infty$ as $x \rightarrow +\infty$
\nBut $\lim_{x\to\infty} \frac{2x}{e^{x}}$ still indotneutance.
\nSo we read to start with $\lim_{x\to\infty} \frac{2x}{e^{x}}$ first:
\n• $(2x)^{2} = e^{x} + 0$ $\forall x$
\n• $(e^{x})^{2} = e^{x} + 0$ $\forall x$
\n• $e^{x} \rightarrow +\infty$ as $x \rightarrow +\infty$
\n• $e^{x} \rightarrow +\infty$ as $\lim_{x\to\infty} \frac{2x}{e^{x}} = 0$ (exist.)
\n \therefore L'Hospital Rule $\Rightarrow \lim_{x\to\infty} \frac{2x}{e^{x}} = 0$ (eziat.)
\nAnd applying L'Hospital Rule again, $\lim_{x\to\infty} \frac{x^{2}}{e^{x}} = 0$
\n(We usually just write
\n $\lim_{x\to\infty} e^{x}x^{2} = \lim_{x\to\infty} \frac{x^{2}}{e^{x}} = \lim_{x\to\infty} \frac{2x}{e^{x}} = \lim_{x\to\infty} \frac{2}{e^{x}} = 0$

(C)
$$
\lim_{x\to 0^+} \frac{\sqrt{u} \sin x}{\sqrt{u} \cdot x} = \lim_{x\to 0^+} \frac{(\sqrt{u} \sin x)}{(\sqrt{u} \cdot x)^2}
$$

\n $= \lim_{x\to 0^+} \frac{\frac{(\sqrt{x})}{\sqrt{u} \cdot x}}{\frac{1}{\sqrt{x}}} = \lim_{x\to 0^+} \cos x \cdot \frac{x}{\sqrt{u} \cdot x}$
\n $= 1$ $(\lim_{x\to 0^+} \frac{\sqrt{x}}{\sqrt{u} \cdot x} = 1 = \lim_{x\to 0^+} (\cos x)$

(d) If is easy to see
$$
\lim_{x\to\infty} \frac{x-\sin x}{x+\sin x} = \lim_{x\to\infty} \frac{1-\frac{dux}{x}}{1+\frac{dux}{x}} = 1
$$
.

Hawew,
$$
\lim_{x \to \infty} \frac{(x - sinx)}{(x + sinx)} = lim_{x \to \infty} \frac{1 - cosx}{1 + cosx}
$$
 does not exist.

\nThe condition $\lim_{x \to 0^+} \frac{f(x)}{g(x)}$ divides "is necessary]

\nfor L'fospital Rule.

Further essamples (other indeterminate forms)

$$
\underbrace{0963.7}_{(a)}(x-cos form)
$$
\n
$$
\underbrace{10i}_{(x>0)}\left(\frac{1}{x}-\frac{1}{sin x}\right) \qquad (x \in (0,\frac{\pi}{2})
$$
\n
$$
= \underbrace{10i}_{(x>0)} \underbrace{sin x-x}_{(x sin x)} \qquad (tquafum to \frac{0}{0} for u)
$$

$$
= \lim_{x\to 0^{+}} \frac{10x-1}{x \ln x + x \ln x}
$$
 (*L'Hospital*) (*still* $\frac{0}{0}$ *form*)
\n
$$
= \lim_{x\to 0^{+}} \frac{-x \ln x}{2(ax - x \ln x)}
$$
 (*L'Hospital*)
\n
$$
= 0
$$
 (*limit*)
\n(*b*) (0.1-6a) *four*]
\n
$$
= \lim_{x\to 0^{+}} \frac{1}{x \ln x}
$$
 (*x 6*(0,6a))
\n
$$
= \lim_{x\to 0^{+}} \frac{1}{x}
$$
 (*Integrals* $\frac{-\infty}{\infty}$ *four*)
\n
$$
= \lim_{x\to 0^{+}} \frac{1}{x}
$$
 (*L'Hospital*)
\n
$$
= \lim_{x\to 0^{+}} \frac{1}{x}
$$
 (*L'Hospital*)
\n
$$
= \lim_{x\to 0^{+}} (x) = 0
$$
 (*limit*)*at alalation quified*)
\n
$$
= \lim_{x\to 0^{+}} x
$$

 $=$ line $e^{\lambda \lambda}$ $= e^{\lim_{x\to 0^+} x \ln x}$ $= e^0$ = 1

(fransfams to 0.(-00) fams which
(can be calculated using L'Hospital as in 16))

(d)
$$
(1^{\infty} \tan \theta)
$$

\n $\lim_{x\to\infty} (1+\frac{1}{x})^x$ $xe(1,\infty)$
\n $= \lim_{x\to\infty} e^{\frac{-\sin((1+\frac{1}{x})^x)}{x}} \tIm(u + \frac{1}{x})$
\n $= \lim_{x\to\infty} x \ln(1+\frac{1}{x})$ $(\infty \circ \tan \theta)$
\n $= \lim_{x\to\infty} \frac{\ln(1+\frac{1}{x})}{\frac{1}{x}} \tIm(u + \frac{1}{\theta})$
\n $= \lim_{x\to\infty} \frac{(\frac{1}{1+\frac{1}{x}}) \cdot (-\frac{1}{x})}{(-\frac{1}{x})}$ $(1+\cosh \theta)$
\n $= \lim_{x\to\infty} \frac{1}{1+\frac{1}{x}} = 1$ $(1+\sin \theta)$ $(1+\cosh \theta)$
\nAnd hence $\lim_{x\to\infty} (1+\frac{1}{x})^x = e^{\frac{2}{36}\pi x \ln(1+\frac{1}{x})} = e$
\n(e) $(\infty^{\circ} \tan)$
\n $\lim_{x\to 0^+} (1+\frac{1}{x})^x$ $(xe(0,\infty))$ $(1+\sin \theta) dx$
\n $= e^{\frac{2}{36}\pi x \ln(1+\frac{1}{x})}$ $(1+\cosh \theta) dx$
\n $= e^{\frac{2}{36}\pi x \ln(1+\frac{1}{x})}$ $(1+\cosh \theta) dx$
\n $= e^{\frac{2}{36}\pi x \ln(1+\frac{1}{x})}$ $(1+\cosh \theta) dx$