MATH3060 HW8 Due date: No need to hand-in

- 1. Show that any norm on \mathbb{R}^n is equivalent to the usual Euclidean norm $\|\cdot\|_2$ defined by $\||x|\|_2 = \int_{\overline{z}=1}^{\infty} x_i^z f_n(x_i, y_i, x_n) \in \mathbb{R}^n$. 2. Let $L_2 = \frac{1}{2} \frac{1}{2} x_n \frac{1}{2} \frac{1}{2$
- 3. Show that $\mathcal{P} = \{ P \in C[0, I] : P is a polynomial <math>\}$ is a set of I^{st} category,

4. Show that

 $Z = \{f \in M[0,1] : f(0,1]\}$ is nowhere dense in $\mathbb{R} \}$ is a residual set of $(M[0,1], d_{\infty})$, where M[0,1] is the space of bounded functions on [0,1], and d_{∞} is the metric induced from supnorm $|| \cdot ||_{\infty}$.