(contrd)

On the other hand, I NIYO st. dH(Antk, An)< &, AnzNi, Ak=1,2,3,... Then for any BEAn, J bre An+k s.t. 16-br < 5 Since $\{b_k\} \subset [0,1]$, \exists subset $b_{k,\ell} \rightarrow b^* \in [0,1]$. By Lemma, b* E A. Hence for bEAn, $d(b, A) \leq |b-b^{*}| \leq |b-b_{kg}| + |b_{kg}-b^{*}|$ $<\frac{\varepsilon}{2}+|b_{k_0}-b^{\star}|$ Letting $l \rightarrow \omega$, $d(b, A) \leq \frac{\varepsilon}{2}$. Since bEAn is arbitrary, we have $\sup_{b \in A_n} d(b, A) \leq \frac{\varepsilon}{2} \quad \forall n \geq N_1$ Combining with $\sup_{\alpha \in A} d(\alpha, A_n) < \varepsilon$, $\forall n \ge N_o$,

we have
$$d_{H}(A, A_{n}) < \epsilon$$
, $\forall n \ge \max \{N_{0}, N_{1}\}$.
 $A_{n} \rightarrow A \quad \tilde{m} \quad (\mathcal{K}, d_{H})$.

<u>Remark</u>: By the proof of Prop2. If An is Cauchy, then

 $\lim_{n \to \infty} A_n = A = \{a \in [0, 1] : \exists a_n \in A_n \text{ s.t. } \lim_{n \to \infty} a_n = a \},$

$$= A' = \left\{ a \in [0, 1] : \begin{array}{c} \exists subseq n_k and a_{n_k} \in A_{n_k} \right\} \\ s.t. k = a \quad a_{n_k} = a \quad b. \end{array} \right\}$$

$$\frac{P_{rop 3}}{S} = \{A \in \mathcal{K} = A \text{ has nonempty interior } S \text{ is of}$$

$$I^{St} \text{ category in } (\mathcal{K}, d_{H}).$$

Pf: A has nonempty interia, if and only if $A \supset (\alpha, \beta)$ for some $(\alpha, \beta) \subset [0, 1]$.

Far any X<B E [0,1], denote

$$S_{\alpha,\beta} = P A \in K: A \supset (\alpha,\beta)$$

<u>Claim 1</u>: Sa, B is closed. Pf: let An be a seq. in Soys s.t. An -> A in (K, dH) By the proof of Prop 2 (see the remark). A= dae [0,1]: I an EAn with his au = as Now $\forall \alpha \in (\alpha, \beta)$, $q_{\mu} = \alpha \in A\alpha$, $\forall n = 1, 3, \cdots$ $\alpha = \lim_{n \to \infty} \alpha_n \in A$. \Rightarrow ⇒ A > (a, p) & hence A ∈ Sa, p. X <u>Claim 2</u>: KISA, p is dense in (K, dH). Pf: Only need to show that $\forall A \in S_{a,\beta} \notin \forall E > 0$ (suff. small) $B_{c}^{H}(A) \cap (\mathcal{K} \setminus S_{\alpha,\beta}) \neq \phi.$ $\frac{\alpha + p}{\zeta}$ Let $A' = A \setminus \left(\frac{dt\beta}{2} - \frac{\xi}{2}, \frac{dt\beta}{2} + \frac{\xi}{2}\right)$ A is closed implies A' is closed. - AER

Since A' doesn't cartain
$$(\frac{dtP}{2} - \frac{\epsilon}{2}, \frac{dtP}{2} + \frac{\epsilon}{2})$$
,
 $A' \notin Sa, \beta$
 \therefore $A' \notin K \setminus Sa, \beta$.
Since $A' \subset A$, $\forall a' \in A'$, $d(a', A) = 0$
 \Rightarrow $Aup d(a', A) = 0$.
 \Rightarrow $Aup d(a', A) = 0$.
On the other hand, for $a \notin A$,
 $uq \ a \notin (\frac{dtP}{2} - \frac{\epsilon}{2}, \frac{dtP}{2} + \frac{\epsilon}{2})$, then $a \notin A'$
 \Rightarrow $d(a, A') = 0$
 $id \ a \notin (\frac{dtP}{2} - \frac{\epsilon}{2}, \frac{dtP}{2} + \frac{\epsilon}{2})$, $\exists a' \notin A'$
 \Rightarrow $d(a, A') = 0$
 $id \ a \notin (\frac{dtP}{2} - \frac{\epsilon}{2}, \frac{dtP}{2} + \frac{\epsilon}{2})$, $\exists a' \notin A'$
such that $|a - \alpha'| \leq \frac{\epsilon}{2}$
 \Rightarrow $d(a, A') = iuf |a - \alpha'| \leq \frac{\epsilon}{2}$
Hence together with the previous case,
 $Aup \ d(a, A') < \epsilon$

 $\therefore d_{H}(A, A') = \max \{ \sup_{a \in A} d(a, A') , \sup_{a' \in A'} d(a', A) \}$ ح ک \Rightarrow A $\in B_{\varepsilon}^{H}(A)$ Houce A'E BE(A) n (K ~ Sr,B) $\Rightarrow B_{\mathcal{E}}^{\mathsf{H}}(A) \cap (\mathcal{K} \setminus S_{\mathcal{A}, \mathcal{B}}) \neq \emptyset \\ \not \times$ Claims 122 together => Y (x,p) c [0,1] Sap is nowhere dense in (K, dH) Hence U Sa, p is of 1st Category Sure à is countable. Finally, Q dense in R > S, C U, S, B . . &, is of 1st category. X

If I subset
$$n_{k}$$
 sit. $1 \ln_{k} S_{k}$ is a subset, of $3 \ln_{k} S_{k}$
then $b = \lim_{k \to \infty} b n_{k} = a$
which contradicts our choice of b .
Hence $\exists n_{0} \ge 0$ sit.
 $b_{n_{2}} + a_{n_{2}} \quad \forall \ l \ large evoluple s.t. n_{2} \ge n_{0}$.
 $\Rightarrow \quad |b_{n_{2}} - a_{n_{2}}| \ge \frac{1}{k}$
Letting $l \ge \infty$, we have $|b - a| \ge \frac{1}{k}$.
Since $b \in A \setminus a \le b$ arbitrary,
 $d(a, A \setminus a \le b) = \inf_{b \in A \setminus a \le b} |b - a| \ge \frac{1}{k}$.
Hence $A \in S_{k}$.
 k
(lain 2 $\Re \setminus S_{k}$ is dence $\inf_{b \in A \setminus a \le b} \Re \setminus \Re \ge \infty$
 $B_{E}^{H}(A) \cap (\Re \setminus S_{k}) \neq \phi$

By def. of
$$S_k$$
, $\exists a \in A \ s \notin$.
 $d(a, A \setminus a \notin) \ge \frac{1}{k}$
 $\sigma A = \{a \notin A\}$.

Note that it is possible to have more than one such "a" if we are in the "inequality case".

Suppose that there are infinitely many such "a's", then \exists seg $a_{\ell} \in A$ such that $a_{\ell}, \neq a_{\ell_{z}}$ is life $d(a_{\ell}, A)(a_{\ell} \xi) \ge \frac{1}{k}, \forall \ell = -(\xi)$

Since alEACTO, IJ, I canageme subset als which implies lags in Cauchy,

 $|\text{towever } (*) \Rightarrow d(a_{l_{j_i}}, a_{l_{j_2}}) \ge \frac{1}{k}, \forall j_{i,j_2}$

which is a cartradiction.

For any
$$\varepsilon > 0$$
, let $\delta = \min\{\frac{\varepsilon}{2}, \frac{1}{2k}\}$, and
 $A' = \left[A \cup \left(\bigcup_{j=1}^{N} [a_j \delta_j, a_j + \delta_j]\right)\right] \cap [0, 1]$
Then A closed \Rightarrow A' is closed \therefore A' ε K.
Clearly $A \subset A' \Rightarrow \sup_{a \in A} d(a, A') = 0$.
On the other hand,
 $a' \in A' = \left[A \cup \left(\bigcup_{j=1}^{N} [a_j \delta_j, a_j + \delta_j]\right)\right] \cap [0, 1]$
 $\Rightarrow \int_{a' \in A} a' \in A \Rightarrow d(a', A) = 0$
 $\int_{a' \in [a_j - \delta, a_j + \delta_j]} \Rightarrow d(a', A) \le \delta \le \frac{\varepsilon}{2}$
Have $\sup_{a' \in A} d(a', A) \le \varepsilon$
 \therefore $A' \in B_{\varepsilon}^{H}(A)$.
Clearly, the argument works for the case $A = \frac{1}{2}a \le \frac{1}{2}$

Now suppose that $\exists a' \in A'$ s.t. $A'=\{a'\}$ or $d(a', A'\{a'\}) > \frac{1}{k}$ If $A' = \{a'\}$, then $A \subset A' \Rightarrow A = \{a'\}$ \Rightarrow A = [a'-d, a'+b] + (a') which is a cartradiction If $d(a', A' \setminus a' \} \geq \frac{1}{k}$ Then $a' \notin [a_i - \delta, a_i + \delta]$ => a'EA and $d(a', A \setminus \{a'\}) \ge d(a', A' \setminus \{a'\}) \ge \frac{1}{E}$ $\Rightarrow a' = a_{\hat{j}} fa some_{\hat{j}}$ culticle à a contradiction,

 $\therefore A' \notin S_k$ Hence $A' \in B_{\epsilon}^{(t)}(A) \cap (\mathcal{K} \setminus S_k), \not X$ Claving $1 \ge 2 \Rightarrow$ S_k is nowhere dense for all k $\Rightarrow \qquad \bigcup_{k=1}^{\infty} S_k \text{ is of } 1^{st} \text{ category}.$

Since $A \in S_2 \Rightarrow \exists a \in A \notin \xi > 0 \text{ s.t.}$ $A \cap B_{\xi}(a) = ia \xi$ (Euclidean ball) $\Rightarrow \exists k (\frac{1}{k} \leq \xi) \text{ s.t.} A \cap B_{k}(a) = ia \xi$ $\Rightarrow d(a, A \setminus ia \xi) \ge \frac{1}{k}$ $\therefore S_{2} \subset \bigcup_{k=1}^{\infty} S_{k}$ Hence S_{2} is of i^{st} Category :X

<u>Thm</u>: $M = \{A \in K : A nowhere dense without isolated pt \}$ is a residual in (K, d_H) and hence dense.

Pf: $K \setminus S = \{A \in K : A \text{ has non-empty interior or } A \text{ hes isolated point(s)} \}$ $C \otimes V \otimes Z$

Since SI, & are of 1st category, SIUS2 and hence KIS are of 1st category .X

Final Exam:

Ch1 Fourier Series

- · Riemann-Lebesgue Lemma
- · pointwise and miniform convergence
- · Weiestrass Approximation Theorem
- · L² contregence (mean contregence)

- · Open and Closed Sets
- · Interior, closure & boundary
- Elementary Inequalities for Functions
 (Young's, Hölder's, Minkowski's)

- Ch3 Contraction Mapping Principle
 - · Completeness
 - · Fixed points & Contraction
 - · Perturbation of Identity
 - Inverse Function Theorem (Implicit Function Thm)
 - · Picard-Lindelöf Thm (IVP in ODE)

Ch4 Space of Continuous Functions · Ascolè's Theorem (equicontunity, minform bddness, precompact) · Arzela's Theorem · Cauchy-Peano Thm (IVP in ODE) · Baire Category Thm (nowhere dense, 1st category, residual) · Applications of Baire Category Thm (es nouhere differentiable contanuous functions & etc)