$(\text{curl}'d)$

On the other hand, $\exists N_1 \times 0$ s.t. $d_{H}(A_{n+k}, A_{n}) < \frac{6}{2}$, $H \cap B N_{1}$, $H k = 1,2,3,...$ Then for any $b \in A_n$, \exists $b_k \in A_{n+k}$ s.t. $|b - b_{k}| < \frac{\epsilon}{2}$ Since $\{b_k\}$ \subset [0,1], \exists subseq $b_{k_\ell} \to b^* \in$ [0,1]. By Lemma, $b^* \in A$. Hence for $b \in A_n$, $d(b, A) \le |b - b^*| \le |b - b_{k_0}| + |b_{k_0} - b^*|$ $<\frac{\xi}{2}+|\phi_{k_0}-b^*|$ Letting $l \rightarrow \infty$, $d(l,A) \leq \frac{\epsilon}{2}$. Since $b \in A_n$ is arbitrary, we have $sup_{b\in An} d(b, A) \leq \frac{\epsilon}{2}$ $\forall n \geq N_1$ Combining with $\bigwedge_{\Omega \in A}^{\Lambda} cl(a, A_n) < \varepsilon$, $\forall n \ge N_{\infty}$,

use have

\n
$$
d_H(A, A_n) < \epsilon, \forall n \ge \max\{N_0, N_1\}.
$$
\n
$$
\therefore A_n \to A \text{ in } (K, d_H) \qquad \text{or}
$$

 $Ramark : By the proof of Prop2. If An is Cauchy.$ then

$$
lim_{n\to\infty} A_n = A = {a \in [0,1]} : \exists an \in A_n \text{ s.t. } lim_{n\to\infty} a_n = a \},
$$

$$
= A' = \{ a \in [0,1]: \exists \text{subseq } n_k \text{ and } a_{n_k} \in A_{n_k} \}
$$

$$
\frac{P_{top3}}{1} \times \mathcal{B}_{1} = \{A \in \mathcal{K} : A \text{ has nonempty interior } \subseteq \text{ is of } \}
$$
\n
$$
1^{5t} \text{ category } \hat{m} \ (K, d_{H}).
$$

 Pf : A has nonempty interior, if and only if $A = (a, b)$ for some $(a, b) \subset [0, 1]$.

 FA any $\alpha < \beta \in [0, 1]$, denote

$$
S_{\alpha,\beta} = \{ A \in K : A \supset (\alpha, \beta) \}
$$

Claim 1: Sap is closed. Pf: Let An Le aseg. in Sap s.t. $A_{n} \rightarrow A$ in (K, d_{H}) By the proof of Prop 2 (see the remark) A= laE [O, 13: 7 an EAn with ling an = ag Now $\forall \alpha \in (\alpha, \beta)$, $a_{u} = \alpha \in A_{\alpha}$, $\forall n=1, 3, ...$ $\alpha = \lim_{n \to \infty} \alpha_n \in A$. \Rightarrow \Rightarrow $A \supset (d, \beta)$ 2 hence $A \in S_{d, \beta}$, $\underset{\infty}{\times}$ <u>Claim 2</u>: $K \setminus S_{\alpha,\beta}$ is dense in (K, d_H) . Pf : Only need to show that $\forall A \in S_{\alpha,\beta}$ & $\forall \xi > 0$
(suff. small) $B_{\varphi}^{H}(A) \cap (K \setminus S_{\alpha,\beta}) \neq \emptyset.$ $\begin{array}{c}\n\frac{\alpha+\beta}{2} \\
\downarrow^2 \\
\downarrow^2\n\end{array}$ Let $A' = A \setminus (\frac{dH}{2}, \frac{2}{2}, \frac{dH}{2}, \frac{2}{2})$ A is closed implies A' is closed. \therefore $A' \in R$

Since A' doesn't cutr
\n
$$
(\frac{df}{2} - \frac{\epsilon}{2}, \frac{df}{2} + \frac{\epsilon}{2})
$$
\n
$$
A' \in K \setminus S_{\alpha, \beta}
$$
\n
$$
\Rightarrow \quad \frac{d\psi}{d(a', A)} = 0
$$
\n
$$
\Rightarrow \quad \frac{d\psi}{d(a', A)} = 0
$$
\n
$$
\Rightarrow \quad \frac{d\psi}{d(a', A)} = 0
$$
\nOn the other hand, $\frac{d\psi}{d(a', A)} = 0$.
\nOn the other hand, $\frac{d\psi}{d(a', A)} = 0$.
\n
$$
\Rightarrow \quad d(\alpha, A') = 0
$$
\n
$$
\Rightarrow \quad d(\alpha, A') = 0
$$
\n
$$
\Rightarrow \quad d(\alpha, A') = 0
$$
\n
$$
\Rightarrow \quad d(a, A') = \frac{\alpha}{2} + \frac{\epsilon}{2}, \quad \frac{d}{2} \cdot \frac{d}{2} \cdot
$$

 $d_H(A, A') = max \{ \begin{array}{l} \text{supp} d(a, A') & \text{supp} d(a', A) \end{array} \}$ $<$ \leq \Rightarrow A \in $B_{f}^{H}(A)$ Hence $A' \in B_E^H(A) \cap (K \smallsetminus S_{\alpha,\beta})$ \Rightarrow $B_{\epsilon}^{H}(A) \cap (X \setminus S_{\alpha,\beta}) \neq \emptyset$ Claims 122 together \Rightarrow \forall α, β C [0,1] $S_{\alpha,\beta}$ is nowhere dense in (k, d_{H}) Hence $\bigcup_{\alpha,\beta\in\mathbb{Q}}S_{\alpha,\beta}$ is of 1st Category x<f $s\hat{\mu}$ le la is countable. Finally, Q dense in $\mathbb{R} \Rightarrow \mathbb{1}_{\Lambda} \subset \bigcup_{\alpha, \beta \in \mathbb{Q}} S_{\alpha, \beta}$ \sim k i Si of 1st category.

Popf	$s_{2} = 1$ A ∞	A has at least one isolated point's
\therefore of 1 st category in (K, d_{H}) .		
PF	$S_{k} = \{A \in K : \begin{array}{c} 3 & a \in A \text{ s.t. } d(a, A \setminus a_{s}) \geq \frac{1}{k} \\ or A = 1a_{s} \end{array} \}$ (k=1,3-)	
Again 1: S_{k} is closed.		
PF	let: $A_{n} \in S_{k}$ and $A_{n} \Rightarrow A_{n}$ in (K, d_{H})	
By dot: of S_{k} , $\exists a_{n} \in A_{n}$ s.t. $d(a_{n}, A_{n} \setminus \{a_{n}\}) \geq \frac{1}{k}$, $\forall n$		
or $A_{n} = \{a_{n}\}$		
Since $a_{n} \in [0, 1]$, \exists subseq a_{n} s.t. $a_{n} \Rightarrow a$		
By lemma, $a \in A$.		
If $A = 3a_{s}$, H_{0A} $A \in S_{k}$.		
If $A \neq 1a_{s}$, H_{0A} $A \in S_{k}$.		
By Lemma, $\exists b_{n} \in A_{n}$ s.t. $\frac{1}{n} \Rightarrow a_{n} \in A_{n}$		
By Lemma, $\exists b_{n} \in A_{n}$ s.t. $\frac{1}{n} \Rightarrow a_{n} \in A_{n}$		

II_{5} = Subseg n_{k} s.t. $1b_{n_{k}}S_{i}$ a subsog of $1a_{n_{k}}S_{i}$	
then	$b = \lim_{k \to \infty} b_{n_{k}} = 0$
while	$3 n_{0} \ge 0$ s.t.
1000	$\exists n_{0} \ge 0$ s.t.
$b_{n_{2}} \neq a_{n_{2}}$ If l large enough s.t. $n_{2} \ge n_{0}$	
\Rightarrow $ b_{n_{2}} - a_{n_{2}} \ge \frac{L}{k}$	
Letting $l \Rightarrow \infty$, we have $ b - \alpha \ge \frac{L}{k}$	
Since $b \in A \setminus \{a\}$ is arbitrary	
$d(a, A) \ge \frac{L}{b} \in A \setminus a_{S}$	
Hence $A \in S_{k}$. \gg	
Hence $A \in S_{k}$. \gg	
Use: Duy would to show that $\forall A \in S_{k}$, $\forall \epsilon > 0$	
$B_{\epsilon}^{+}(A) \cap (\forall \setminus S_{k}) \neq \phi$	

$$
By des. of S_{k,}
$$
 $\equiv aGA s.t.$
 $d(a, A \backslash a!) \ge \frac{1}{k}$
 $\propto A = \{a\}$.

Note that it is posicible to have more than me such "a" if we are in the "inequality case".

Suppose that there are infuritely many such "a's", Here \exists seg $a_{\ell} \in A$ such that $a_{\ell_1} + a_{\ell_2}$ is little $d(a_{l}, A\backslash\{a_{l}\})\geq\frac{l}{k}$, $\forall l \longrightarrow (*)$

Suice agEACIOIJ, I carregeure subseg a_{e_5} Which waplies {Cleg } is Cauchy,

However $(\star) \Rightarrow d(a_{i,j}, a_{i,j}) \geq \frac{1}{k}$, $\forall j,j$

which is a cartradiction.

: There are at most faitely neary $\{a_1, a_2, \cdots, a_N\}$ $5.4.$ $d(q_j, A\backslash\{a_j\}) \geq \frac{1}{R}$.

For any
$$
\epsilon > 0
$$
, let $\delta = n\bar{u}a \left\{\frac{\epsilon}{z}, \frac{1}{2k}\right\}$, and

\n
$$
A' = \left\{A \cup \begin{pmatrix} 0 & a & b & b \\ 0 & a & b & c \\ 0 & a & c & d \end{pmatrix}, A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & c & d \end{pmatrix}
$$
\nThen A closed $\Rightarrow A'$ is closed $\therefore A \in \mathbb{R}$.

\nClearly, $A \subset A' \Rightarrow \text{ supp } d(a, A') = 0$.

\nOn the other hand,

\n
$$
a' \in A' = \left\{A \cup \begin{pmatrix} 0 & a & b & b \\ 0 & a & b & d \\ 0 & 0 & 0 \\ 0 & 0 & d & d \end{pmatrix}, A \right\} = 0
$$
\n
$$
\Rightarrow \left\{A' \in [a_{j}\cdot b, a_{j}\cdot b] \Rightarrow d(a', A) \leq \delta \leq \frac{\epsilon}{2} \right\}
$$
\nHow, we have $\left\{A(a', A) \leq \epsilon\right\}$.

\n
$$
\therefore A_{\mu}(A, A') = \max \left\{A^{\mu}a \mid a(A') \text{ and } a' \in A' \right\} \text{ and } a' \in A \Rightarrow A \in \mathbb{R}^d
$$
\n
$$
\therefore A' \in B_{\epsilon}^{\mu}(A).
$$
\nClearly, the argument works $\frac{1}{2}a$ the area $A = \frac{1}{2}a$

Now suppose that $\exists \alpha' \in A'$ s.t. $A'= \{a'\}$ or $d(a', A'\{a'\}) \geq \frac{1}{6}$ If $A' = \{a'\}$, then $A \subset A' \Rightarrow A = \{a'\}$ $\Rightarrow A' = [a' \cdot b, a' \cdot b] + \{a'\}$ which is a contradiction If $d(a', A'\setminus a'\setminus) \geq \frac{1}{k}$ Then $a' \notin [a_i - \delta, a_i + \delta]$ \Rightarrow a EA and $d(a', A\backslash\{a'\}) \geq d(a', A\backslash\{a'\}) \geq \frac{1}{k}$ \Rightarrow a = a ; for some j, which is a contradiction,

 \therefore A \notin S_k Hence $A' \in B_{\epsilon}^{H}(A) \cap (k \setminus S_{k})$, $*$ Claims $122 \Rightarrow S_k$ is nowhere dense for all k \Rightarrow $\bigcup_{k=1}^{\infty} S_k$ is of 1^{st} category.

 $S\dot{u}\alpha A\in\mathcal{L}_{2}\Rightarrow\exists\alpha\in A\&\epsilon\geq0 s.t.$ $A \cap B_{\varsigma}(a) = \{a\}$ (Euclidean ball) \Rightarrow $\exists k (\frac{1}{k} < \epsilon)$ s.t. $AnB_{\frac{1}{k}}(\alpha) = \{\alpha\}$ \Rightarrow $d(a, A\backslash\{a\}) \ge \frac{1}{b}$ \therefore $\&_{2} \subset \bigcup_{k=1}^{\infty} S_{k}$ Hence x_2 is of 1^{st} Category $\cdot x$

Thm: S= < A E X : A nowhere dense without isolated pt } is a residual in (K, dH) and hence dense.

$$
Pf: K \setminus \mathcal{A} = \{A \in K : A has nonempty interior or \}
$$
\n
$$
A has nonempty interior or \}
$$
\n
$$
C \mathcal{A} \cup \mathcal{A}_{2}
$$

Suice D, De ave of 1st category, DIULe and hear KIS are of 1st Category.

Final Exam:

Chl Fourier Series

- Riemann Lebesgue lemma
- pointwise and uniform convergence
- Weiestrass Approximation Theorem
- · L²-Convergence (mean convergence)

Parserval's Identity

Chz Metric Spaces Basic notations

- Open and Closed Sets \bullet
- Interior, closure & boundary ê
- Elementary Inequalities fa Functions \bullet (Young's, Holder's, Minkouski's)
- Ch3 Contraction Mapping Principle
	- Completeness \bullet
	- Fixed points Contraction \bullet
	- · Perturbation of Identity
	- Inverse Function Theorem (Implicit Function Thm)
	- · Picard-Lindelof Thm (IVP in ODE)

0h4 Space of Continuous Functions · Ascolè's Theorem equicontinuity uniformboldness precompact · Arzela's Theorem · Cauchy-Peano Thm (IVP in ODE) Baire Category Thm (nowhere dense, 1st category, residual) · Applications of Baire Category Thm (eg nowhere differentiable containers functions & etc)