Further example $K = \{A : \varphi \neq A \subset [0, 1] \\ \ge A \ closed in [0, 1] \}$ For A, B & K, define $d_{\mu}(A,B) = \max \{ \sup_{a \in A} d(a,B) \}$ Recall that $d(a, B) = \inf_{b \in B} |a-b| (dist. from a to set B)$ $d(b, A) = \inf_{a \in A} |b-a| (dist. from b to set A)$ Prop.1 dH is a metric on K. Pf: (i) clearly $d_{H}(A, B) \ge 0$. If $d_{A}(A,B)=0$, then $\sup_{A \in A} d(a, B) \leq d_{H}(A, B) = 0$ \Rightarrow d(a,B)=0, \forall a \in A > VaEA, VN>0, IbnEB st. $|(Q-b_n)| < \frac{1}{N}$ ⇒ bn → a m [0,1] Suice Bis<u>clased</u>, acB. :. ACB.

Similarly
$$B \subset A$$

 $\therefore A = B$
(ii) $(\log_{A}(y) d_{\mu}(A,B) = d_{\mu}(B,A)$ by $dofinition$
(iii) let $A, B, C \in K$
 $\forall a \in A, b \in B, a c \in C$
 $|a-b| \leq |a-c|+|c-b|$
 $\Rightarrow \inf_{b \in B} |a-b| \leq |a-c| + \inf_{b \in B} |(c-b)|$
 $i.e. d(a,B) \leq |a-c| + d(c,B)$
 $\leq |a-c| + \sup_{c \in C} d(c,B)$
 $\leq |a-c| + d_{H}(C,B)$
 $\forall n \geq 0, \exists c_n \in C \ s.t. |a-c_n| < d(a,C) + \frac{1}{n}$
 $\therefore d(a,B) \leq d(a,C) + \frac{1}{n} + d_{H}(C,B)$
 $\leq d_{H}(A,C) + d_{H}(C,B) + \frac{1}{n}$
Hume $\sup_{a \in A} d(a,B) \leq d_{H}(A,C) + d_{H}(C,B) + \frac{1}{n}$

Similarly sup
$$d(b, A) \leq d_{H}(A, C) + d_{H}(C, B) + \frac{1}{h}$$

 $\Rightarrow \quad d_{H}(A, B) \leq d_{H}(A, C) + d_{H}(C, B) + \frac{1}{h}, \forall n=12...$
letting n>so, we have
 $d_{H}(A, B) \leq d_{H}(A, C) + d_{H}(C, B)$.
(i), (ii) \Rightarrow (iii) together $\Rightarrow \quad d_{H}$ is a metric on K .
K
Prop2 (K, d_{H}) is complete.
Lemma Let An be a seq. in K ,
 $A = \{a \in [0,1] : \exists an \in An \ st. \lim_{h \to \infty} a_{h} = a\}, and$
 $A' = \{a \in [0,1] : \exists subseq n_{k} and an_{k} \in An_{k}\},$
If An is a Cauchy seq. in (K, d_{H}),
Hen $A = A'$

To prove
$$A' \subset A$$
, we cansider an $a \in A'$.
By def. of A' , \exists subseq n_k and $a_{n_k} \in A_{n_k}$, $\forall k$
s.t.
 $\lim_{k \to \infty} a_{n_k} = a$.
If $a \notin A$, then
 $\exists \xi_0 > 0$ and a subseq $n_k (\notin n_k \notin k)$) s.t.
 $d(a, A_{n_k}) \ge \xi_0$.
Otherwise, $\forall \xi_0 > 0, \exists n_0 > 0$ s.t.
 $d(a, A_{n_k}) \ge \xi_0$.
Otherwise, $\forall \xi_0 > 0, \exists n_0 > 0$ s.t.
 $d(a, A_n) < \xi_0$, $\forall n \ge n_0 \le n \notin n_k \notin f_n$
 $\Rightarrow \forall n \ge n_0 \le n \notin n_k \notin f_n \equiv \xi_n$, if $n \ne n_k$ for any k
 $a_n = \begin{cases} \xi_n, i \notin n \ne n_k & f_n & ay k \\ a_{n_k}, i \notin n \ge n_k & f_n & ay k \end{cases}$
limiting to a (i.e. $\lim_{n \ge 0} a_n = a$)
 $\Rightarrow a \in A$ which catradicts our assumption.

:
$$\exists \mathcal{E}_0 > 0$$
 and a subseq $n_{\ell} (\notin \{n_k\}, \forall \ell\})$ s.t.
 $d(\alpha, A_{n_{\ell}}) \ge \mathcal{E}_0$.

Hence Eo < 1a - Znel, V Zne Ane

$$\Rightarrow \qquad \varepsilon_{\circ} \leq |\alpha - a_{n_{k}}| + |a_{n_{k}} - z_{n_{k}}| \\ \leq |\alpha - a_{n_{k}}| + d(a_{n_{k}}, A_{n_{k}}) \qquad (by take \quad \inf_{z_{n_{k}} \in A_{k}}) \\ \leq |\alpha - a_{n_{k}}| + d_{H}(A_{n_{k}}, A_{n_{k}}) \qquad (by take \quad \lim_{z_{n_{k}} \in A_{k}})$$

As
$$a_{n_k} \ge a$$
 and An is Cauchy,
 $\exists k_0 \ge 0$ sit. $|a - a_{n_k}| < \frac{\varepsilon_0}{4}$, $\forall k \ge k_0$
and $d_H(A_{n_k}, An_k) < \frac{\varepsilon_0}{4}$, $\forall k \ge k_0$
 $a_{n_k} \forall n_k \ge n_{k_0}$

Letting I large enough s.t. $N_{\ell} \ge N_{k_{0}}$, we have $\varepsilon_{0} \le \frac{\varepsilon_{0}}{4} + \frac{\varepsilon_{0}}{4} = \frac{\varepsilon_{0}}{z}$

which is also a contradiction.

Since a CA' is arbitrary, A'CA & home A=A' ×

Pf of Pap2: Let An be a Couchy seq. in (R, d_H)
and A = { a ∈ [0,1]: J an ∈ An with him
$$a_n = a$$
}
Step1 A is closed (2 than A∈ K)
Pf: let a ∈ [0,1] \ A, then
 $a \neq him a_n$ fn any seq. an with $a_n ∈ A_n$
 \Rightarrow J €0>0 and subseq n_k s.3. fn any $a_{n_k} ∈ A_{n_k}$
 $|a_{n_k} - a| ≥ ε_0$
Taking inf over An_k, we have
 $J €_0>0$ and subseq n_k s.3.
 $d(a, A_{n_k}) ≥ ε_0$
let $b ∈ (a - \frac{ε_0}{2}, a + \frac{ε_0}{2})$, then $\forall a_{n_k} ∈ A_{n_k}$
 $|a - a_{n_k}| ≤ |a - b| + |b - a_{n_k}|$
 $\Rightarrow ε_0 < \frac{ε_0}{2} + |b - a_{n_k}|, \forall a_{n_k} ∈ A_{n_k}$
 $\Rightarrow \frac{ε_0}{2} ≤ d(b, A_{n_k})$

¢

Hence, there is no seq an with an
$$An$$

s.t. $\lim_{n \to \infty} a_n = b$
 $\therefore b \in [0,1] \setminus A$.
Since $b \in (a^{-\frac{e_0}{2}}, a + \frac{e_0}{2})$ is arbitrary,
 $(a^{-\frac{e_0}{2}}, a + \frac{e_0}{2}) \subset [0,1] \setminus A$.
As $a \in [0,1] \setminus A$ is arbitrary, $[0,1] \setminus A$ is open
 $\therefore A$ is closed.
This completes the proof of Step 1.
Step 2 An $\rightarrow A$ in (K, d_H)
Pf: By def. of A,
 $\forall E > 0, \forall a \in A, \exists a_n \in A_n \neq N_0 > 0$ s.t.
 $|a - a_n| < \varepsilon, \forall n > N_0$
 $\Rightarrow d(a, A_n) < \varepsilon, \forall n > N_0$
 $\Rightarrow Aup d(a, A_n) < \varepsilon, \forall n > N_0$
 $(t_0 t_0, catd)$