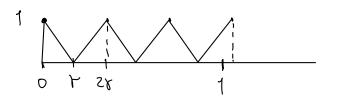
(Cont/d)

Claim 2 : SL à nouvere deuse (By claim 1, one needs to show CEO, 1] \SL is deuse) Pf = By definition, we need to show that $\forall \epsilon > 0$, and $f \in C[0, 1]$, $B^{\infty}_{\varepsilon}(f) \cap \left(C[0, 1] \setminus S_{L} \right) \neq \emptyset.$ If $f \notin S_L$, it is clear: $f \notin B_{\mathcal{E}}(f) \neq f \notin C[g_1] \setminus S_L$ For fESL, Weierstrass Approximation Theorem => VE>0, 7 a polynomial p such that $\|f - p\|_{\infty} < \xi_{\varepsilon}$ let the Lip, constant of p be LI, For r>0 (*r<1, not necessary rational), let P(x) be the restriction to [0,1] of the jig-saw function of period Zr satisfying $\varphi(0) = 1$, $0 \le \varphi \le 1$, and slope of the graph of φ is $\pm \frac{1}{r}$ (except the finitely many non-differentiable points.)



Then consider the function $g(x) = p(x) + \frac{\xi}{2} \varphi(x) \in ([0,1])$ Then $\|g-f\|_{\infty} \leq \|p-f\|_{\infty} + \frac{\xi}{2}\|\varphi\|_{\infty} < \frac{\xi}{2} + \frac{\xi}{2} = \varepsilon$ i.e. $g \in B_{\varepsilon}^{\infty}(f)$. $(\forall r \in (0,1))$

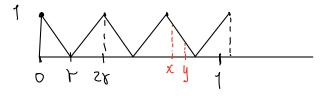
On the other flaud

$$|\frac{\xi}{2} \varphi(y) - \frac{\xi}{2} \varphi(x)| \le |g(y) - g(x)| + |p(y) - p(x)|$$

$$\Rightarrow \quad \frac{\xi}{2} |\varphi(y) - \varphi(x)| \le |g(y) - g(x)| + L_1 |y - x|.$$

Note that YXETO, I], JYETO, I] near X such that

$$|\varphi(y) - \varphi(x)| = \frac{1}{r} |y - x|$$



$$\Rightarrow$$
 $|g(y) - g(x)| \ge \left(\frac{\varepsilon}{2r} - L_1\right)|y - X|$

Hence if we choose $r < \frac{\varepsilon}{z(L+L_1)}$, then VXETO, IJ, JYETO, IJ Such that $|g(y)-g(x)| \ge \left(\frac{\varepsilon}{\varepsilon r} - L_1\right)|y-x| > L|y-x|.$ is. VXELO, 1], g is not lip. to at x with Lip constant L. ⇒ gęs $: \quad \mathcal{B}_{\mathfrak{C}}^{\infty}(f) \cap (\mathbb{C}[0, \mathbb{I}] \setminus S_{L}) \neq \phi$ By claim1, SL is closed thence SL is nowhere dense. Final Step: Let S = { f E (TO, 1] = f à differentiable at some x E TO, 1] }

Then by Lemma 4.12, $\forall f \in S$, $f \in S_N$ for some $N \in IN$. $\Rightarrow S \subset \bigcup_{N=1}^{\infty} S_N$.

By claim 2, S is of 1st category. And Baire Category Thm (using CEO,1] is complete) ⇒ S thas empty riterin. ⇒ Set of cts, but nowhere differentiable functions on To, II (= complement of S in CTO, II) is a residual set and here dense in (TO, I]

Remarks (i) The Thin and its proof provide no explicit example, not even a method to construct a contrinuas

nowhere differentiable function.

(iis An explicit example was given by Weierstnass =

$$W(x) = \sum_{n=1}^{\infty} \frac{\cos(3^n x)}{2^n} \quad \text{on } \mathbb{R}$$

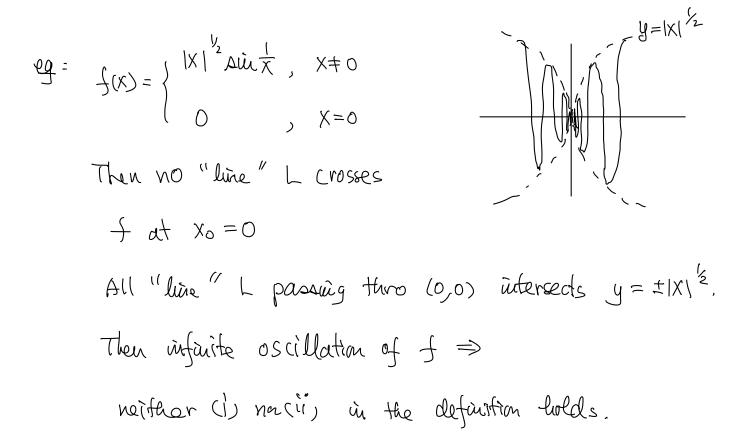
Further examples

Def let
$$f:[a,b] \rightarrow \mathbb{R}$$
 be a function, and
 $L = \mathbb{R} \rightarrow \mathbb{R}$ for some $\alpha, \beta \in \mathbb{R}$
 $x \mapsto \alpha x + \beta$ (Lie degrees 1 poly)
We say L crosses f (or f crosses L)
 $xf \exists x_0 \in [a,b]$, and $\delta > 0$ such that
 $f(x_0) = L(x_0)$
and either one of following cholds
 $f(x_0) = L(x_0)$
 $f(x_0) \in f(x_0)$, $\forall x \in [x_0 - \delta, x_0] \cap [a,b]$
 $L(x) \geq f(x_0)$, $\forall x \in [x_0 - \delta, x_0] \cap [a,b]$
 $f(x_0) = f(x_0)$, $\forall x \in [x_0 - \delta, x_0] \cap [a,b]$
 $f(x_0) = f(x_0)$, $\forall x \in [x_0 - \delta, x_0] \cap [a,b]$
 $f(x_0) = f(x_0)$, $\forall x \in [x_0 - \delta, x_0] \cap [a,b]$
 $f(x_0) = f(x_0)$, $\forall x \in [x_0 - \delta, x_0] \cap [a,b]$
 $f(x_0) = f(x_0)$, $\forall x \in [x_0 - \delta, x_0] \cap [a,b]$
 $f(x_0) = f(x_0)$, $\forall x \in [x_0, x_0 + \delta] \cap [a,b]$
 $f(x_0) = f(x_0)$, $\forall x \in [x_0, x_0 + \delta] \cap [a,b]$

eg
$$f(x) = ain x$$

• $L(x) = 0$ (givo function)
Clearly L crosses f
(at $0, \pm \pi, \pm 2\pi, \cdots$)
(At $x_0=0$, the $\delta > 0$ can be chosen as π)
• If $L_1(x) = 1$, L_1 doesn't cross f :
et every intersection $(2nt1) = 1$, for all
 $x \in ((2nt1) = -\delta, (2nt1) = 1 > 1/(2nt1) = 1$, $40 < \delta < 2\pi$

$$f(x) < L_1(x) \equiv 1$$



Def: A function
$$f:[a,b] \rightarrow \mathbb{R}$$
 is said to be "crosses no lines"
If there is no $L(x) = \alpha x + \beta$ crosses f .

Thus. The set
$$Z = \{f \in C[a,b] : f crosses no lines \}$$

Pf: Note that

C[a,b]\Z={fEC[a,b]: I some L crosses f (at some pt.)} Where L(x) = dx+p (d, BEIR)

And we need to show that $C[a,b] \setminus Z$ is of 1st category. Notation: For $f \in C[a,b]$ and $\alpha \in \mathbb{R}$, we denote $f_{-\alpha}(x) = f(x) - dx$

(subtracting the linear part of L from f)

Let An be the set of
$$f \in C[a,b]$$
 for which
 $\exists d \in En, n]$ and $x \in [a,b]$ such that

$$\begin{cases} \int_{-\alpha} (t) \leq \int_{\alpha} (x) & \forall \pm \in (x - \frac{1}{n}, x) \\ \int_{-\alpha} (t) \geq \int_{\alpha} (x) & \forall \pm \in (x, x + \frac{1}{n}) \end{cases} \\ (\text{Learly } A_n \subset A_{n+1}, \forall n \quad (sum (x - \frac{1}{n}, x + \frac{1}{n}) \subset (x - \frac{1}{n}, x + \frac{1}{n})) \end{cases} \\ \text{Note that } t \text{ is now the independent variable, and} \\ f_{-a}(t) \leq \int_{-a} (x) & \text{ is exactly} \\ f(t) \leq \alpha t + (f(x) - \alpha x) \stackrel{\text{det}}{=} L t , \forall t \in (x + \frac{1}{n}, x) \end{cases} \\ \text{Sumilarly, } f_{-a}(t) \geq f_{-a}(x) & \text{ is exactly} \\ f(t) \geq \alpha t + (f(x) - \alpha x) = L t , \forall t \in (x, x + \frac{1}{n}) \end{cases} \\ \therefore f \in A_n \implies f \text{ crosses } L \text{ at } x \\ (with alope |\alpha| \leq n) \end{cases} \\ \text{And if } f \text{ crosses some } L \text{ at some } x \\ with L given by consts < (elope) > p, then for some $\delta > 0$ either $\int dt + p \leq f(t), \forall t \in [x, x + \delta] \cap [t_0, t_0] \end{cases}$$$

or
$$\int dt + \beta \ge f(t)$$
, $\forall t \in [x - \delta, x] \cap [a, b]$
 $dt + \beta \le f(t)$, $\forall t \in [x, x + \delta] \cap [a, b]$

By continuity of
$$f \in C[a,b]$$
, we also have
 $dX + \beta = f(x)$
i.e. $\beta = f(x) - dx = f_{-a}(x)$

Here either

$$\int f_{\alpha}(x) \leq f_{\alpha}(t), \quad \forall t \in [x - \delta, x] \cap [a, b]$$

 $\int f_{\alpha}(x) \geq f_{\alpha}(t), \quad \forall t \in [x, x + \delta] \cap [a, b]$

or
$$\int_{-\alpha} (x) \ge f_{-\alpha}(t)$$
, $\forall t \in [x - \delta, x] \cap [a, b]$
 $\int_{-\alpha} (x) \le f_{-\alpha}(t)$, $\forall t \in [x, x + \delta] \cap [a, b]$

$$\Rightarrow -f \in A_{n} \quad \text{on } f \in A_{n} \quad \text{for some } n \quad (n \ge |\alpha| + \frac{1}{n} \cdot \sigma)$$

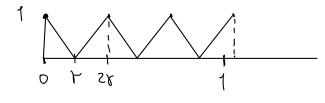
$$\Rightarrow -f \in A = \bigcup_{n=1}^{\infty} A_{n} \quad \text{on } f \in A = \bigcup_{n=1}^{\infty} A_{n}$$

Denote $B = \{f \in C[a,b] : -f \in A \}$

Then f crosses some lines ⇒ f∈ AUB Hence CIA, 6J \ Z = AUB So we ally need to show that An is nowhere dense, In, by proving (1) An is closed Vn, and (2) Clab] An is deuse. Pfof(1) Let Ifp's be a seq-in An and $f_k \rightarrow f$ in (C[a,b], dw) Since fre An, J KREEn, nJ and XRG [a,b] St. $(f_k)_{-\alpha_k}(t) \leq (f_k)_{-\alpha_k}(X_k) , \forall t \in (X_k, X_k)$ $(f_k)_{-\alpha_k}(t) \geq (f_k)_{-\alpha_k}(X_k) , \forall t \in (X_k, X_k, X_k)$ (LE [a,b]) By passing to subseq., we may assume Xk -> Xn E [a, b] $d_k \rightarrow d_p \in [-n, n]$

Then
$$(f_k)_{-d_k}(t) \leq (f_k)_{-d_k}(x_k)$$
, $\forall t \in (x_k - \frac{1}{2}, x_k)$
 $\Leftrightarrow f_k(t) - d_k t \leq f_k(x_k) - d_k X_k$, $\forall \in (x_k - \frac{1}{2}, x_k)$
Now $\forall t \in (x_0 - \frac{1}{2}, x_0)$, $\exists k_0 \geq 0$ s.t.
 $t \in (x_k - \frac{1}{2}, x_0)$, $\forall k \geq k_0$ (since $x_k \gg x_0$)
Then $f_k \gg f$ in (Claphi, d_0), $d_k \gg d_0$, $x_k \gg x_0$
we have $f(t) - d_0 t \leq f(x_0) - d_0 x_0$ (by lefting $k \gg + \omega$)
Surve $t \in (x_0 - t_1, x_0)$ is arbitrary, we've proved
 $f_{-d_0}(t) \leq f_{-d_0}(x_0)$, $\forall t \in (x_0, x_0 + t_1)$
Surve $f \in An$, \therefore An is closed.

Define $g(x) = p(x) + \frac{\varepsilon}{2} p(x)$ $\in ([a,b]]$ (we may assume ([a,b] = [0,1]) where p is the restriction to [a,b] of the jig-saw function of period zr satisfying $0 \le p \le 1$, and shipe of the graph of p is $\pm \frac{1}{7}$ (r > 0, to be determined) (except the finitely many non-differentiable points)



Then $\|g-f\|_{\infty} \leq \|g-p\|_{\infty} + \|p-f\|_{\infty}$ $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$ $\Rightarrow \quad g \in B_{\varepsilon}^{\infty}(f)$ Suppose that $g \in A_n$ Hay $\exists x \in [a, b], x \in [-n, n] = s, t$ $g_{-\alpha}(t) \leq g_{-\alpha}(s), \quad t \in (x-\frac{1}{n}, x)$

$$g_{-\alpha}(t) \ge g_{-\alpha}(x), \quad t \in (X, X + \frac{1}{\eta})$$

If p(X) e[o,之了, then consider $g_{-\alpha}(t) \leq g_{-\alpha}(x), \quad \forall \ t \in (x - t, x)$ which implies V te (X-t, X) $P(t) + \frac{\xi}{3} \rho(t) - \alpha t \leq \rho(x) + \frac{\xi}{2} \rho(x) - \alpha x$ $\Rightarrow \qquad \varphi(x) - \varphi(t) \geq \frac{3\alpha}{2}(x-t) - \frac{3}{2}(\varphi(x) - \varphi(t))$ By the property of P, It with O(X-t<t s.t. $\rho(x) - \rho(t) \leq -\frac{1}{2}$ Consider $r < nume \left\{\frac{1}{n}, \frac{\varepsilon}{12(L+n)}\right\}$, where L = Lip. const. of p.By r<t, te(x-h,x) and s.t.

 $-\frac{1}{2} \ge \frac{3\alpha}{\varepsilon}(x-x) - \frac{2}{\varepsilon}(p(x)-p(t))$ $\Rightarrow 1 \le \frac{6|\alpha|}{\varepsilon}|x-x| + \frac{6}{\varepsilon} \lfloor |x-t|$ $\lesssim \frac{12(L+n)}{\varepsilon} + <1,$

which is a contradiction.

House
$$\varphi(x) \in [\frac{1}{2}, 1]$$
.
Then consider $g_{-\alpha}(x) \ge g_{-\alpha}(x)$, $\forall \pm \varepsilon(x, x+\frac{1}{2})$
which implies $\forall \pm \varepsilon(x, x+\frac{1}{2})$
 $P(t) + \frac{1}{3}\varphi(t) - \alpha t \ge p(x) + \frac{1}{5}\varphi(x) - dx$
 $\Rightarrow P(t) - P(x) \ge \frac{3\alpha}{5}(x-x) - \frac{3}{5}(p(t) - p(x))$
By the property of φ , $\exists \pm u^{-1/4} = 0 < t - x < t$
 $s.t.$ $p(t) - q(x) \le -\frac{1}{5}$
Since $t < \frac{1}{5} \Rightarrow \pm \varepsilon(x, x+\frac{1}{5})$ and $s.t.$
 $-\frac{1}{5} \ge \frac{3\alpha}{5}(t-x) - \frac{3}{5}(p(t) - p(x))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x)))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x)))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x)))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x)))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x)))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(p(t) - p(x))$
 $\Rightarrow (\leq \frac{12}{5}(1+x) - \frac{3}{5}(1+x) - \frac{3}{5}(1+x) + \frac{3}{5}(1+x)$
 $Hight is p(t) = \frac{1}{5}(1+x) - \frac{1}{5}(1+x) + \frac{1}{5}(1+$

Let = A function
$$f = [a, b] \rightarrow \mathbb{R}$$
 is said to be nowhere monotonic
of \exists no interval $[c, d] \subset [a, b]$ on which f is monotonic

PE: If
$$f \in C[[q,b]]$$
 is nonotonic on some interval [E,d],
then $LX = \beta$ with $\beta \in (f(c), f(d))$ crosses f
if $f(d) > f(c)$ (a $\beta \in (f(d), f(c))$ if $f(c) > f(d)$)
If $f(c) = f(d)$, then $f = Const.$ on $E(d]$.
Clearly many lives cross f.
Here f monotonic on come interval
 $\Rightarrow f \in C[[q,b]] \setminus Z$
Since $C[[q,b]] \setminus Z$ is also of 1st category.

⇒ set of its functions monotonic on some interval is of 1st artegory
∴ Set of its nonhere monotonic functions is a residual and hence dense by Baire Category Thm.
(since cta, b] is complete.) ×

Remark: The Thin can be used to prove Thin 4.13 too.

Another application of Baire Category Theneur

$$Ef: let V be a Bauach space.$$
Suppose on the cartrony that V has a countable basis $\mathscr{B} = \{w_j\}_{j=1}^{\infty}$.
Then $V = \bigcup_{n=1}^{\infty} W_n$
where $W_n = \operatorname{Span}\{w_j, \dots, w_n\}$
Claim 1: When thes empty interim
 $Ef: Sime V$ is of infinite dimensional,
 $V(W_n \neq \emptyset, \forall n=1,2,\dots)$
 $\Rightarrow \{v \in V : |v| = 1\} \setminus W_n \neq \emptyset, \forall n=1,2,\dots$
(by scaling & W_n is a vector subspace.)

$$\|(a_{j}, -, a_{n})\| = \|\sum_{j=1}^{n} a_{j} w_{j}\|_{V}$$

Since any two norms on IRn are equivalent, 11 (a,..., an >11 is equivalent to standard Euclidean noun $|(a_1, \cdots, a_n)| = \sqrt{a_1^2 + \cdots + a_n^2}$ \Rightarrow $\exists C_1, C_2 > 0$ s.t. lu|_T ≤ C, (Tu) ≤ Cz |u|_T, Au∈Wn Since Ve > Vo in V, Ive's is Cauchy in (V, 1.1v) -: 42>0, 3 lo>0 st. IUp-Ukly- < E, Yl, k > lo $\Rightarrow |T_{U_{e}} - T_{U_{k}}| \leq \frac{C_{2}}{C_{i}} |U_{e} - U_{k}| \leq \frac{C_{2}}{C_{i}} \epsilon \quad \forall \ l, k \geq l_{0}$ > The 5 is Cauchy in TR" (with standard metric) By completeness of IR", I at = (at ..., ant) ER" $|TU_{e} - a^{*}| \rightarrow 0$ as $l \rightarrow \infty$. ς÷ Let $v^* = \tau^{-1}a^* = \sum_{j=1}^{n} a_j^* w_j \in W_n$

we have

$$|v_{\ell} - v^{\star}|_{V} \leq C_{1} |Tv_{\ell} - a^{\star}| \rightarrow 0$$
 as $l \geq \infty$