Applications of Baire Category Thenem (to function spaces)

Thm 7:13 The set of all continuous, nowhere differentiable functions forms a residual set in C[a,b] and Rence dense in C[a,b].

To prove the theorem, we wed a lemma:

Lemma 4.2: Let $f \in C[a, b]$ be differentiable at x. Then it is Lipschietz continuous at x

(i.e.
$$|f(y) - f(x)| \leq L |y - x|$$
, $\forall y \in [a, b]$.
(It is clear for y near x. The issue is for y not near x)
Pf: By assumption ($\forall E > 0$, say $E = 1$)

 $\exists \delta_0 > 0$ such that

$$\forall y \in (X - \delta_0, X + \delta_0) \setminus \{X \leq (x \in [a, b])\}$$

$$\frac{f(y) - f(x)}{y - x} - f(x) | < 1$$

 $\Rightarrow |f(y) - f(x)| \le (|+|f(x)|) |y-x|$

∀ ye (x-δ₀, x+δ₀) ∩ [a,b]

If
$$[q,b] \setminus (x-\delta_0, x+\delta_0) = \emptyset$$
, we are done.
If not, then for $y \in [a,b] \setminus (x-\delta_0, x+\delta_0)$,
 $(y-x) \ge \delta_0$

and hence

$$\begin{split} |f(y) - f(x)| &\leq |f(y)| + |f(x)| \\ &\leq 2 ||f||_{\infty} \leq \frac{2 ||f||_{\infty}}{\delta_{0}} |y-x| \\ \text{let} \quad L = \max \left\{ 1 + |f(x)|, \frac{2 ||f||_{\infty}}{\delta_{0}} \leq , \text{ we have} \right. \\ &\left. |f(y) - f(x)| \leq L |y-x|, \forall y \in [a, b]. \end{split}$$

$\frac{Pf \text{ of Thm 4.13}}{We only need to show the case that <math>[q,b] = [0,1]$. $\forall L>0$, define $S_{L} = \{f \in C[0,1] : f \text{ is lip. cts at some } X \in [0,1] \}$ $With \text{ Lip. Const.} \leq L$ $\frac{Claim}{1} : S_{L} \text{ is closed}.$ $Ef : Let if n's be a seq. in <math>S_{L}$ which converges to some $f \in C[0,1]$ in $d \in Metric$.

By definition of SL,
$$\forall n \ge 1$$

 $\exists x_n \in [0,1]$ such that
fn is Lip. ets at x_n with Lip const $\le L$
i.e. $|f_n(y) - f_n(x_n)| \le L |y - x_n|$, $\forall y \in [0,1]$.
We new assume that $x_n \gg x^*$ fn some $x^* \in [0,1]$
by passing to a subseq.
(The corresponding subseq. fn is still convergent)
 $\ge f_n \gg f$ in da

Thou

$$\begin{split} |\{f(y) - f(x^*)| &\leq |f(y) - f_n(y)| + |f_n(y) - f(x^*)| \\ &\leq ||f - f_n||_{\infty} + |f_n(y) - f_n(x_n)| + |f_n(x_n) - f(x^*)| \\ &\leq ||f - f_n||_{\infty} + ||y - x_n|| + |f_n(x_n) - f_n(x^*)| + |f_n(x^*) - f(x^*)| \\ &\leq 2||f - f_n||_{\infty} + ||y - x_n|| + ||x^{n-x^*}| \\ &\leq 2||f - f_n||_{\infty} + ||y - x^*|| + ||x^{n-x^*}| \\ &= ||y - x^*|| + 2(||f - f_n||_{\infty} + ||x^{n-x^*}|) \end{split}$$

Letting
$$n \rightarrow +\infty$$
, we have
 $|f(y) - f(x^*)| \leq L|y - x^*|$, $\forall y \in \mathbb{D}_0 / \mathbb{I}$
 $\Rightarrow f \in S_L$.