(c)
$$
(c \text{nt/}d)
$$

\nAssume (X,d) tag not isolated point,

\nAgain: 4×5 , 4×5 is nowhere above in X.

\nIf: Suppose not, then $\frac{1}{3}x_5 (=x_5)$ (and $\frac{1}{3}$), i.e., $B_r(y) \subset \overline{x} \times \overline{x} = \frac{1}{3}x_5$

\nThus implies $\begin{cases} y = x & \text{if } B_r(x) < \frac{1}{3}x_5 \leq x_5 \end{cases}$

\n $\Rightarrow \begin{cases} x_5 = B_r(x) & \text{if } B_r(x) < \frac{1}{3}x_5 \leq x_5 \end{cases}$

\n $\Rightarrow \begin{cases} x_5 = B_r(x) & \text{if } B_r(x) < \frac{1}{3}x_5 \leq x_5 \end{cases}$

\n $\Rightarrow \begin{cases} x_5 = B_r(x) & \text{if } B_r(x) \leq x_5 \leq x_5 \end{cases}$

\nThus, by $(b) \times 4$ to claim, any fourth set is nowhere. But $b = \begin{cases} 1, & \text{if } b = 1, & \$

Examples in infinite dimensional normed spaces eg: let MIla,b1 = Spall of bounded functions on La,b5. (Notneessary continuous Then $||f||_{\infty} = \sup_{\mathbb{R} \downarrow 1} |f(x)|$ is well-defined and is a norm on $M[a,b]$ (check!) Clearly $(C[a,b], d_{\infty})$ is a metric (alsorecta) subspace of $(M[a,b],da)$ Claim: C[a, b] is nowhere dense in M[a, b] (wit do metric). $Pf: (I)$ clearly, CR_1bJ is closed in MTA, bJ (uniform limit of cts. functions is cts.) Hence Cta, 5 is nowhere dense in Mta, 67 $\iff MU(q,b] \setminus CH_4b \subseteq M[0,b] \setminus CH_3b \subseteq a$. We only need to show that: (2) \forall $B_{\epsilon}^{\infty}(f)$ \subset MTa,b], $B_{\epsilon}^{\infty}(f)$ \cap $\left(\mathsf{M}\mathbb{Q}_{p}$ b] \setminus \subset [a,b]) \neq ϕ (i) If $f \in M[a,b] \setminus C[a,b]$, we are done.

 (i) $If f \in C[a,b],$

$$
def\overline{u}x = \begin{cases} f(x) + \frac{\xi}{2} & x \in [a, b] \cap \mathbb{R} \\ f(x) - \frac{\xi}{2} & x \in [a, b] \setminus \mathbb{R} \end{cases}
$$

Then $q(x) - f(x) = \pm \frac{\epsilon}{2}$ $\Rightarrow \quad ||q-\xi||_{\infty} = \frac{\varepsilon}{2} \Rightarrow q \in B_{\xi}^{\infty}(f)$

If $g\in C\left[a,b\right]$, then $9-f=\begin{cases} \frac{5}{2} & \text{Eq,bIO} & \text{is continuous} \\ \frac{5}{2} & \text{Eq,bIV} \end{cases}$ which is impossible. Here gEMTa,bJ\CTa,bJ $\Rightarrow B_{\epsilon}^{\infty}(f) \cap (M[a,b] \setminus C[a,b]) \neq \emptyset$ $\overline{\mathbb{X}}$

$$
\underline{eg}: let \quad l_{\infty} = \text{spall of bounded sequences with } d_{\infty} \text{ we have}
$$
\n
$$
d_{\infty}(x,y) = \sup_{\eta} |x_{\infty} - y_{\eta}| \quad \text{for } x = +x_{\infty} \text{, } y = \sup_{\eta} |x_{\infty} - y_{\eta}|
$$
\n
$$
\text{Let } \epsilon = \text{subset of convergent sequences.}
$$
\n
$$
\text{Then } \epsilon \text{ is nowhere} \text{ dual in } (l_{\infty}, d_{\infty})
$$

24: We only need to show (1) x (2) in the following
(1) \geq is closed in low.
24: (Well show that $\ln x$) \geq is open)
14: $x = 3x + 3 \leq \ln x$
11001: $x \ln \text{div} \ln x$ is all values and
(+0) $x \ln \text{div} \ln x$ is all values and
(+0) $x \ln \text{div} \ln x$ is all values.
12: $\frac{1 - 2}{3} > 0$
13: $\frac{1}{3} > 0$
14: $\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{$

However luisup $y_n = 1 + \frac{2}{5} > 1 - \frac{2}{3} = 1$ luisinf y_n .

 $= 9$ ϵl_{ω} $\zeta = 8$ ϵ^{2} κ η $(l_{\omega}$ ζ \neq ϕ χ

- Def: A set in a metric space is called of first catogroy (or meager) if it can be expressed as a countable union of nowhere dence sets
	- · A set is of second category if it is not of first categroy,
	- . A set is called <u>residual</u> if its complement is of first category

Prop 4.8	Let (X,d) be a metric space.
(a) $\text{From } subset of a set of 1^{st} category \text{ is of } 1^{st} category.$	
(b) The union of <u>countable</u> many set of 1 st category \text{ is of } 1^{st} category.	
of $(S^t$ category)	
(c) $\text{If } (X,d)$ has no <u>ibitted point</u> , then every <u>countable</u> subset	
of X is of $(S^t$ category).	

 $PF: (A)$ let $E \subset X$ be a set of 1st category.

Then
$$
E = \bigcup_{n=1}^{\infty} E_n
$$
 for some nowhere dense set E_n $n=1, 2,...$
let FCE , then by Prop 4.7(a)
 $F \wedge E_n$ is nowhere due, $Var (F \wedge E_n CE_n)$

Heuce
$$
F = F \wedge E = \bigcup_{n=1}^{\infty} (F \wedge E_n)
$$
 is of 1^{st} category.

(b)
$$
\overline{L}_{n} = \bigcup_{k=1}^{m} \overline{E}_{n,k}
$$
, $\overline{E}_{n,k} = n$ oudaq deuse.

$$
\Rightarrow \bigcup_{n=1}^{k_0} E_n = \bigcup_{n=1}^{\infty} \left(\bigcup_{k=1}^{\infty} E_{n,k} \right) = \bigcup_{(n,k) \in N \times N} E_{n,k}
$$

$$
\tilde{u}_3 \text{ of } l^{5t} \text{ (afegory } . \text{ (since } N \times N \text{ is countable)}
$$

(c) If
$$
E = \{x_i\}_{i=1}^{\infty} C \mathbb{X}
$$
, then $\mathbb{R}_{OP} 4.7(C)$
\n $\Rightarrow \{x_i\}$ G nowhere dense by i
\n $\Rightarrow E = \bigcup_{i=1}^{\infty} \{x_i\}$ G of 1st category (by part (b) x

Prop4.81 Let I d be ^a metricspace a Every subset containing ^a residual set is residual ^b The intersection of countable many residual sets is ^a residual set ^C If ^I ^d has no isolatedpoint then complement of ^a countable set is ^a residual set

LES: By taking complement in Prop 4.8)

eg4.5 IR has no isolated point in standardmetric Iq is nowhere dense ^t rational number ^Q is of 1stcategory Hence ^I IRI ^Q theset ofirrational members is ^a residual set in IR

Thm4.9 Baire CategoryTheorem In ^a completemetricspace any set of 1stcategory has empty interior

Pf: Let the complete matrix space be
$$
(X,d)
$$
.
And let $E = \bigcup_{n=1}^{\infty} E_n \subset X$ be of 1st ategory
where E_n is nowhere due at X, $\forall n$

Consider any open matrix ball
$$
B_{r_0}(x_0)
$$
 of \mathbb{X} .

\nSince \overline{E}_1 θ as empty interior (by dofu. of number classes),

\n $(\mathbb{X}\setminus\overline{E_1})\cap B_{r_0}(x_0) \neq \emptyset$

Let
$$
x_1 \in (\mathbb{X}\setminus\overline{E_1})\cap B_{r_0}(x_0)
$$
.
\n $\Rightarrow \overline{u_1} \in (\mathbb{X}\setminus\overline{E_1} \land B_{r_0}(x_0) \text{ are open})$
\n $\Rightarrow \overline{F_1}(x_1) \in (\mathbb{X}\setminus\overline{E_1}) \cap B_{r_0}(x_0)$
\n $\Rightarrow \text{ and } r_1 \leq \frac{r_0}{2} \quad (\text{ as we can always choose } \alpha$
\n $\Rightarrow \overline{B_{r_1}(x_1)} \cap \overline{E_1} = \emptyset$
\nNow $\overline{E_2} \Rightarrow \text{ now done done, } \overline{B_{r_1}(x_1)} \cap \overline{E_1} = \emptyset$
\nNow $\overline{E_2} \Rightarrow \text{ now done done, } \overline{E_2} \text{ has empty interior.}$
\n $\Rightarrow (\mathbb{X}\setminus\overline{E_2}) \cap B_{r_1}(x_1) \neq \emptyset$.
\n $\Rightarrow (\mathbb{X}\setminus\overline{E_2}) \cap B_{r_1}(x_1) \neq \emptyset$.
\n $\Rightarrow (\mathbb{X}\setminus\overline{E_2}) \cap B_{r_1}(x_1) \neq \emptyset$.
\n $\Rightarrow \overline{B_{r_2}(x_2)} \cup \mathbb{X}^2 \Rightarrow \text{such that}$
\n $\overline{B_{r_2}(x_2)} \subset (\mathbb{X}\setminus\overline{E_2}) \cap B_{r_1}(x_1) \quad (\subset (\mathbb{X}\setminus\overline{E_2})$
\n $\overline{B_{r_2}(x_2)} \subset (\mathbb{X}\setminus\overline{E_2}) \cap B_{r_1}(x_1) \quad (\subset (\mathbb{X}\setminus\overline{E_2})$

Note that $\overline{B_{r_2}(x_2)} \subset B_{r_1}(x_1) \subset (\mathbb{X})\overline{\mathcal{E}_1} \supseteq_{\cap} B_{r_0}(x_0) \subset \mathbb{X}\setminus \overline{\mathcal{E}_J}$

Repeating the process, we obtain
$$
3x_{n}s_{n=1}^{\infty} \subset \mathbb{X}
$$

and
$$
\forall r_n \leq m_1 \subseteq \mathbb{R} + \text{ such that}
$$

\n(a) $\overline{Br_{n+1}(x_{n+1})} \subseteq Br_n(x_n)$
\n(b) $\overline{Br_n(x_n)} \subseteq \mathbb{Z} \setminus \overline{F_3}, \forall j=1,\dots, n$
\n $(\overline{Br_n(x_n)} \cap \overline{F_3} = \emptyset, \forall j=1,\dots, n)$
\nBy (4) $\mathbb{Z}(b)$, $3x_n \geq \bar{a}$ *Cauchy* $\neq \overline{g}$, $(\overline{E_K}!)$
\nHence *can beceles* of $\mathbb{X} \Rightarrow \exists x \in \mathbb{X} \text{ s.t. } x_n \Rightarrow x$.
\nBy (4) *again*, $x_{n+m} \in \overline{Br_n(x_n)}$, $\forall n=1,3,5,...$
\n $\Rightarrow x \in \overline{Br_n(x_n)}$

 $B_{y}(a)$ 2 (c) $x \in \overline{X} \setminus \overline{E_n}$ and $B_{r_0}(x_0)$

Since N is aubitrary, $X \in \bigcap_{n=1}^{\infty} (X \setminus \overline{E}_{n}) = \overline{X} \setminus \left(\bigcup_{n=1}^{\infty} \overline{E_{n}}\right)$ $\Rightarrow x \in (\mathbb{X}\backslash (\mathcal{G},\overline{\in}_n)) \cap B_{r_n}(x_0)$ $\Rightarrow (\exists \big(\bigotimes_{n=1}^{\infty} \overline{F_n})) \cap B_{r_0}(x_0) \neq \emptyset$

$$
\Rightarrow (\angle \langle (\frac{G}{n-1}F_{n}) \rangle \cap B_{r_{0}}(X_{0}) \Rightarrow (\angle \langle (\frac{G}{n-1}F_{n}) \rangle \cap B_{r_{0}}(X_{0})
$$
\n
$$
\Rightarrow (\angle \langle (\frac{G}{n-1}F_{n}) \rangle \cap B_{r_{0}}(X_{0})
$$
\n
$$
\Rightarrow \Rightarrow
$$
\n
$$
\Rightarrow
$$
\n<math display="block</math>

Recall that E is closed nowhere dense set \Leftrightarrow $X\E(-\overline{X}\E)$ is an open dense set.

Hence Thm4.9 can berephrased as

Thin4.9 Baire CategoryTheorem In ^a completemetricspace countable intersection of open dense sets is dense

ie If (X,d) is complete and $G_n \subset X$ is a sequence of Open deuse sets in \mathbb{X} , then $\bigcap_{n=1}^{\infty} G_n$ is dense.

 $(Pf : Ex!)$

Cor4.10 = Let
$$
(X, d)
$$
 be complete.
Suppose that $X = \bigcup_{n=1}^{\infty} E_n$ with E_n are closed subsets.
Then at least one of these En's has non-euupty interior.

$$
Pf: Suppose not, then all En has empty interior.\n
$$
\Rightarrow E_n \geq \text{normaler} \text{ and } E_n \text{ has empty interior.}
$$
\n
$$
\Rightarrow E_n \geq \text{normaler} \text{ and } E_n \geq \text{ and } E_n \text{ is also a closed.}
$$
\n
$$
Baire (ategory Thm \Rightarrow \underline{X} has empty interior which)
$$
\n
$$
for a and addition sine \underline{X}^0 = \underline{X} \cdot \overline{X}
$$
$$

Remark: This corollary umplies that it is impossible to decompose a complete metric space into a countable union of nowhere dense sets

(i.e. complete matrix C space 'tself is of
$$
z^{nd}
$$
 category.)

Cor4.11	A set of 1st category in a output matrix space
cannot be a residual set, and via versa.	
\Rightarrow asidual sets of a complete notation of $\frac{2^{nd} \text{ and } \text{array}}{2^{nd} \text{ and } \text{array}}$	
\Rightarrow asidual sets of a complete notation of $\frac{2^{nd} \text{ and } \text{array}}{2^{nd} \text{ and } \text{array}}$	
\Rightarrow Find the area of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
\Rightarrow Hea a set of 1st category,	
<math display="inline</td>	

$$
\Rightarrow \quad \mathbb{X} = \left(\bigcup_{N=1}^{\infty} \overline{\mathsf{E}}_{N} \right) \cup \left(\bigcup_{N=1}^{\infty} \overline{\mathsf{E}}_{N}^{\prime} \right)
$$

ie ^I is ^a countable union of close subsets with empty interiors. This contradicts Cor4.10. The other way is similar. $*$

 $eg: \mathbb{R}$ is amplete, $\hat{\alpha}$ of 1^{st} category \Rightarrow II=IRIQ is of z^{nd} category.