Examples in infinite dimensional normed spaces eq: let MTa, b] = space of bounded functions on [a, b]. (Not necessary continuous) Then $||f||_{\infty} = \sup_{[a,b]_{T}} |f(x)|$ is well-defined and is a norm on MEA, bJ. (check!) (learly (CTa, b], do) is a metric (also vector) subspace of (M[a,b], dos) (lann: C[a, b] is nowhere dense in M[q,b] (wrt dos metric). Pf: (1) clearly, Cta, b) is closed in Mta, b] (uniform lunit of cts. functions is cts.) Hence C[a,b] is nowhere dense in M[a,b] ← M[a,b] \ C[a,b] = M[0,b] \ ([a,b] is douse. . We only need to show that : (z) $\forall B_{\varepsilon}^{\infty}(f) \subset M[a,b], B_{\varepsilon}^{\infty}(f) \cap (M[a,b] \setminus ([a,b]) \neq \phi$. (i) If f E M [a, b] \ C [a, b], we are done.

(i), If $f \in C[a,b]$,

define
$$g(x) = \int f(x) + \frac{\varepsilon}{2}$$
, $x \in [a, b] \cap \mathbb{Q}$.
 $f(x) - \frac{\varepsilon}{2}$, $x \in [a, b] \setminus \mathbb{Q}$.

Then $g(x) - f(x) = \pm \frac{\varepsilon}{2}$ $\Rightarrow ||g - f||_{\infty} = \frac{\varepsilon}{2} \Rightarrow g \in B_{\varepsilon}^{\infty}(f)$

If $g \in Cta, b$, then $g - f = \begin{cases} \frac{5}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ -\frac{5}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{cases}$ is continuous, which is impossible. Hence $g \in Mta, \frac{1}{2} \setminus Cta, \frac{1}{2}$ $\Rightarrow B_{E}^{\infty}(f) \cap (Mta, \frac{1}{2} \setminus Cta, \frac{1}{2}) \neq \emptyset$

eg: let los = space of bounded sequences with dos metric

$$d_{\infty}(x,y) = \sup_{n} |x_n - y_n|$$
 for $x = i \times n^2$, $y = i \cdot y_n \cdot s$
let $\mathcal{C} = \text{subset}$ of convergent sequences.
Then \mathcal{E} is nowhere dense in (los, dos) .

Ef: We only need to show (1)
$$\varepsilon(\varepsilon)$$
 in the following
(1) ε is classed in los.
Ef: (Weill show that los ε is open)
Let $x = ix_{NS} \in i_{OO} \subset \varepsilon$
Then x_{N} diverges and
 $(+\infty z) = i_{VAM} = i_{OO} \times i_{OO} \times$

(2)
$$l_{00} \setminus \mathbb{E} \left(= l_{00} \setminus \overline{\mathbb{E}} \quad b_{1}(1) \right)$$
 is dense
If: Let $B_{2}^{\infty}(x)$ be a ball in l_{00} ,
we need to show that $B_{2}^{\infty}(x) \wedge (l_{00} \setminus \mathbb{E}) \neq \emptyset$
If $x \in l_{0} \setminus \mathbb{E}$, we are done.
If $x \in \mathbb{E}$, then $x = 4x_{0} \leq i_{0} \text{ carrogent}$
Let $L = l_{0}^{\infty} \times n$
Then $\exists n_{0} \times 0 \leq 1$. $|x_{0} - L| \leq \frac{C}{2}$, $\forall n \geq n_{0}$.
Defere $y = 4y_{0} \leq c \log \log$
 $y_{n} = \begin{cases} x_{0} \\ L + \frac{C}{2} \end{cases}$, $i_{0}^{2} n \leq n_{0} \leq n \leq 1$.
Then $|x_{n} - y_{n}| = 0 \quad 24 \quad n < n_{0} \quad a_{n} \in 1$.
Then $|x_{n} - y_{n}| = 0 \quad 24 \quad n < n_{0} \quad a_{n} \in 1$.
Then $|x_{n} - y_{n}| \leq 1 \leq x_{0} \leq 1 \leq x_{0} \leq 1$.
 $\forall n \geq n_{0} \leq n \leq 1$.
 $\forall n \geq n_{0} \leq 1 \leq x_{0} \leq 1$.
 $\forall n \geq n_{0} \leq 1 \leq x_{0} \leq 1$.
 $\forall n \geq 1 \leq x_{0} \leq 1 \leq x_{0} \leq 1$.
However $l_{1}^{2} = c \leq 1$.
However $l_{1}^{2} = c \leq 1 \leq x_{0} \leq 1$.

 $:= y \in l_{10} \setminus \mathcal{E} \implies B_{\varepsilon}^{\infty}(x) \cap (l_{10} \setminus \mathcal{E}) \neq \not A$

- Def: A set in a matric space is called <u>of first catogray</u> (or <u>meager</u>) if it can be expressed as a <u>countable union of nowhere dence</u> sets.
 - · A set is of second category if it is not of first category,
 - A set is called <u>residual</u> if its <u>complement</u> is of first category.

Pf: (a) let ECX le a set of 1st category.

Then
$$E = \bigcup_{n=1}^{\infty} E_n$$
 for some nowhere dense set E_{n-1}^{∞} .
Let $F \subset E$, then by Prop 4.7(a)
FREN is nowhere dense, $\forall n$ (FRENCEN)

Hence
$$F = F \cap E = \bigcup_{n=1}^{\infty} (F \cap E_n)$$
 is of 1st category.

(b) Let
$$E_n = \bigcup_{k=1}^{\infty} E_{n,k}$$
, $E_{n,k} = nowhere deuse$.

$$\Rightarrow \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} \left(\bigcup_{k=1}^{\infty} E_{n,k} \right) = \bigcup_{\substack{(n,k) \in N \times I \\ (n,k) \in N \times I \\ N}} E_{n,k}$$

is of 1st category. (since N/X/N is countable)

(c) If
$$E = \{x_i\}_{i=1}^{\infty} C X$$
, then $Rop 4.7(C)$
 $\Rightarrow \{x_i\} \in nowhere dense tri
 $\Rightarrow E = \bigcup_{i=1}^{\infty} \{x_i\}$ is of 1st category (by particles) $X$$

egts: IR has no isolated point (in standard metric)

$$\Rightarrow$$
 29; 5 is nowhere dense \forall rational number
 \Rightarrow Q is of 1st category
Hence II = IR \ Q the set of irrational numbers is a
residual set in R.

Pf: Let the complete metric space be
$$(X,d)$$
.
And let $E = \bigcup_{n=1}^{\infty} E_n \subset X$ be of 1st category
where $E_n \cong n$ ownere dense in $X, \forall n$

Consider any open metric ball
$$B_{r_0}(x_0)$$
 of X .
Since \overline{E}_i that empty interior (by defu. of nowhere donseness),
 $(\overline{X} \setminus \overline{E}_i) \cap B_{r_0}(x_0) \neq \emptyset$

$$\begin{split} & \text{let } x_{1} \in (\mathbb{X} \setminus \overline{E}_{1} \) \cap B_{r_{0}}(x_{0}) \\ & \text{Suice both } \mathbb{X} \setminus \overline{E}_{1} \neq B_{r_{0}}(x_{0}) \text{ are open,} \\ & \exists r_{1} > 0 \quad \text{st.} \quad \overline{B_{r_{1}}(x_{1})} \subset (\mathbb{X} \setminus \overline{E}_{1} \) \cap B_{r_{0}}(x_{0}) \\ & \text{aud } r_{1} \leq \frac{r_{0}}{2} \quad \left(\begin{array}{c} \text{as we can always choose a} \\ & \text{swaller ball, } y_{1} \in B_{r_{0}}(x_{1}), \forall r < \overline{r} \\ & \text{then } B_{r_{1}}(x_{1}) = (x_{1}) \Rightarrow B_{r_{0}}(x_{1}) = (x_{1}) \Rightarrow B_{r$$

Note that $\overline{B_{r_2}(x_2)} \subset \overline{B_{r_1}(x_1)} \subset (\overline{X} \setminus \overline{E_1}) \cap \overline{B_{r_0}(x_0)} \subset \overline{X} \setminus \overline{E_1}$.

and
$$4r_{n} \sum_{n=1}^{\infty} \subset \mathbb{R}_{+}$$
 such that
(a) $\overline{B_{r_{ntt}}(Xut1)} \subset B_{r_{n}}(Xn)$
(b) $\overline{r_{nt1}} \leq \frac{\overline{r_{n}}}{2}$
(c) $\overline{B_{r_{n}}(xn)} \subset X \setminus \overline{E_{j}}, \forall j=1, \dots n$
 $(\overline{B_{r_{n}}(Xn)} \cap \overline{E_{j}} = \emptyset, \forall j=1, \dots n)$
By (4) & (b), $3xn \ge is a$ Cauchy seq. (Ex!)
Hence completeness of $X \Longrightarrow \exists x \in X$ s.t. $x_{n} \rightarrow x$.
By (4) equin, $X_{n+m} \in \overline{B_{r_{n}}(x_{n})}, \forall m=1,2,3, \dots$
 $\Rightarrow x \in \overline{B_{r_{n}}(x_{n})}$

By (a) & (c) X & X (En and Bro(Xo)

Surce n is aubitrary, $x \in \bigcap_{n=1}^{\infty} (X \setminus E_n) = X \setminus (\bigcup_{n=1}^{\infty} E_n)$ $\Rightarrow x \in (X \setminus (\bigcup_{n=1}^{\infty} E_n)) \cap B_{r_0}(x_0)$ $\Rightarrow (X \setminus (\bigcup_{n=1}^{\infty} E_n)) \cap B_{r_0}(x_0) \neq \emptyset$

$$\Rightarrow (X \setminus (\bigcup_{n=1}^{Q} E_{n})) \cap B_{r_{0}}(x_{0}) \Rightarrow (X \setminus (\bigcup_{n=1}^{Q} E_{n})) \cap B_{r_{0}}(x_{0})$$

$$\neq \varphi$$
Surce $B_{r_{0}}(x_{0})$ is arbitrary, $E = \bigcup_{n=1}^{Q} E_{n}$ thas empty interior.
 X
Note: This implies, if X complete, residue set is dense

$$(E \quad \text{empty interior} \Rightarrow X \setminus E \quad \text{dense})$$

Recall that E is closed nowhere dense set $\iff X \setminus E (= X \setminus E)$ is an open dense set.

i.e. If (X,d) is complete and $G_n \subset X$ is a sequence of <u>open dense sets</u> in X, then $\bigcap_{n=1}^{\infty} G_n$ is <u>dense</u>.

 $(P : E_X)$

Cort.10: Let
$$(X,d)$$
 be complete.
Suppose that $X = \bigcup_{n=1}^{\infty} E_n$ with E_n are closed subsets.
Then at least me of these E_n 's that non-empty interior.

Ef: Suppose not, then all En thas empty interior.
⇒ En is nowhere dense,
$$\forall n$$
. (Since En are closed)
Hence $\mathbb{X} = \bigcap_{n=1}^{\infty} E_n$ is of 1st category.
Boire Category Thm ⇒ \mathbb{X} has empty interior which
is a contradiction since $\mathbb{X}^\circ = \mathbb{X} \cdot \mathbb{X}$

Remark : This corollary implies that it is impossible to decompose a <u>complete</u> metric space into a <u>countable</u> union of nowhere dense sets.

Conflit A set of 1st category in a couplete metric space
cannot be a residual set, and vice versa.
(=> residual sets of a couplete metric space is of 2nd category)
Ef: Let E be a set of 1st category,
Here E =
$$\bigcup_{n=1}^{\infty}$$
 En with En nowfore duse.
If E is also a residual set,
Here XIE is also of 1st category,
Reace XIE = $\bigcup_{n=1}^{\infty}$ En with En 'nowfore doese.
 \Rightarrow X = EU(XIE) = ($\bigcup_{n=1}^{\infty}$ En) U($\bigcup_{n=1}^{\infty}$ En')
Talwice Closure of En * En',
 $X = ((\bigcup_{n=1}^{\infty}) \cup ((\bigcup_{n=1}^{\infty}) \in n))$
 \Rightarrow X = ($\bigcup_{n=1}^{\infty}$ En') U($\bigcup_{n=1}^{\infty}$ En')

i.e. X is a countable minion of close subsets with empty interiors. This contradicts (or 4.10. The other way is similar. X

eg: \mathbb{R} is anaplete, \mathbb{Q} of 1st category \Rightarrow II=1R1 \mathbb{Q} is of z^{ud} category.