\$4.2 Baire Category Thenem

Def let
$$(X,d)$$
 be a metric space. A set E in X is dense
if $\forall x \in X$ and $\varepsilon > 0$,
 $B_{\varepsilon}(x) \cap E \neq \emptyset$

Notes: (i) Easy to see that E is dense $\Leftrightarrow \overline{E} = \mathbb{X}$. (ii) \mathbb{X} is dense (in (\mathbb{X}, d))

eg: If
$$(X, \text{discrete metric})$$
, then for $0 < \varepsilon < 1$ and $X \in X$,
 $B_{\varepsilon}(X) = 1 \times 5$. Therefore E is dense in $X \Rightarrow E = X$
(i.e. X is the only dense set in $(X, \text{discrete})$)

egl: In (IR, standard metric), D and II = IR D are dense.

eg2: Weierstrass approximation theorem implies the set of all polynomials of forms a dense set in (CIO,1], dos).

Def: let (X,d) be a metric space. A point $X \in X$ is called an isolated point if $\{X\}$ is open in X. Notes: • As 1x5 is always closed in a metric space, 1x5 is both <u>open and closed</u> in Z (=) X is an isolated point.

• X isolated => {x} is not nowhere clanse.

egs: « IR has no isolated points (since {x} is is not open in IR, YXEIR)

• All points in \mathbb{Z} (subspace of \mathbb{R}) are isolated in \mathbb{Z} (not \mathbb{R}).

sure: $\forall n \in \mathbb{Z}$, $in s = B_{\frac{1}{2}}(n)$ metric ball in \mathbb{Z} (But (Z, subspace metric) \neq (Z, discrete metric))

Turbomded & bounded < 1

Pf: (Q) Trivial

(b) Let EI, EZ be nowhere dense sets
Then G₁ = X \ E₁ and G₂ = X \ E₂ are open dense set.
Clearly G₁∩G₂ is open.
<u>Claim</u>: G₁∩G₂ is dense in X.
2f: ∀ x ∈ X e r > 0,
G₁ dense ⇒ B_r(x)∩G₁ ≠ Ø
⇒ = x₁ ∈ B_r(x)∩G₁.

Since
$$B_r(x) \cap G_1$$
 is open, $\exists p>0$ such that
 $B_p(x_1) \subset B_r(x) \cap G_1$.

Now G_2 dense \Rightarrow $B_p(x_1) \cap G_2 \neq \emptyset$ \Rightarrow $B_r(x) \cap (G_r, \cap G_2) \Rightarrow B_p(x_1) \cap G_2 \neq \emptyset$

This proves the claim.

Hence $\mathbb{X}(G_1 \cap G_2) = (\mathbb{X} \setminus G_1) \cup (\mathbb{X} \setminus G_2)$ = $\overline{E_1} \cup \overline{E_2}$ is nowhere dense.

By (Q)(ii), EIUEZ ⊂ EIUEZ ⇒ EIUEZ à also nowhere deuse. Then, induction ⇒ UEZ à nowhere deuse provided EIJ: Ek are nowhere deuse. (c) (to be intid)