Pf : Define $E = \bigcup_{b=0}^{\infty} E_k$, where $E_k = \Big\{ x = \frac{1}{2^k} \Big(\frac{y_i}{\hat{y}_{i}} \Big) \in \overline{G} : \, \, \text{R}_k \in \mathbb{Z}, \, \, \text{R}_k = \text{R}_k \Big\}.$ \overline{O} (0,0) G closed and bounded \Rightarrow Ex is furthe. Hence $E = \bigcup_{k} E_{k}$ is countable. Let $\{f_n\}$ be a sequence in E. ϵ bounded \Rightarrow $\exists M>0$ such that $||f_n||_{\infty}\leq M$, $\forall n$ $i.e.$ $|f_n(x)| \leq M$, $\forall n \geq \forall x \in \overline{G}$ In particular, VXE E, $|\mathcal{f}_n(x)| \leq M$, $\forall n$. If we arrange the points of E in a sequence $E = \xi z_1 \xi_{i=1}^{\infty}$, then VJ $\{\frac{1}{2n}(z_j)\}$ is a bounded sequence.

Hence one can apply Lemma 4.3 to find a subsequence 19n5 of 15n5 (weingthe same notation "n" for the index) such that $\forall x \in E$, $\mathcal{G}_N(x)$ is convergent. We claim that g_n is the required convergent subsequence of f_n in the metric space $(C(\overline{G}),d_{\infty})$. note that we only have pointwise convergence for countable many points at this moment $Sintl (C\bar{G})$, $d\omega > \omega$ complete, we only need to show that $\{g_{n}\}\$ is a Cauchy sequence in $(C(\tilde{\epsilon})$, dos). By equicartinality of \mathcal{E}_1 $(\Rightarrow$ equicontinuity of $\{f_n\}$) $HESO_{>}\equiv \delta > 0$ such that $|G_{n}(x)-G_{n}(y)|<\frac{\epsilon}{3}$, $\forall n \neq \forall x,y\in G$ with $|x-y|<\delta$.

Note that if k satisfies $\frac{1}{2}k < \frac{2\delta}{\sqrt{n}}$ then $\forall x \in \overline{G}, \exists z_j \in E_k$ such that $(X-z_j)<\delta$. (see figure)

 $(g_{n}(x) - g_{n}(z_{\tilde{j}}) < \frac{\epsilon}{3}$, $\forall n$ $HerQ$

Therefue,

$$
|g_{\mathbf{M}}(\mathbf{x}) - g_{\mathbf{M}}(\mathbf{x})| \leq |g_{\mathbf{M}}(\mathbf{x}) - g_{\mathbf{M}}(\mathbf{z}_{\hat{\mathbf{j}}})| + |g_{\mathbf{M}}(\mathbf{z}_{\hat{\mathbf{j}}}) - g_{\mathbf{M}}(\mathbf{z}_{\hat{\mathbf{j}}})| + |g_{\mathbf{M}}(\mathbf{z}_{\hat{\mathbf{j}}}) - g_{\mathbf{M}}(\mathbf{x})|
$$

$$
\langle \frac{2\epsilon}{3} + [q_n(z_j) - q_m(z_j) \rangle
$$

Since $\{g_n(z_j)\}\$ is convergent, $\exists n_0=1, (z_j)>0$ s.t.

$$
|S_{4}(z_{3})-S_{4}(z_{3})|<\frac{\epsilon}{s}, \quad \forall n,m\geq n_{0}(z_{3}).
$$

 \Rightarrow $|G_{\mathsf{N}}(x) - G_{\mathsf{M}}(x)| < \varepsilon$, \forall n, $w > n_o$ (3). (3) depends on x)

Now take
$$
N_0 = \max_{z_j \in E_k} n_0(z_j) \ge 0
$$
,
\n $\Rightarrow_{y_i \in E_k} n_0(w_i) \le 0$,
\n $|g_n(x) - g_m(x)| \le 0$, $\forall n, m \ge N_0$.
\n $|g_n(x) - g_m(x)| \le 0$, $\forall n, m \ge N_0$.

This completes the proof of the Therem. It