$Pf: Define E = \bigcup_{k=0}^{\infty} E_k$, where $E_{k} = \left\{ X = \frac{1}{2^{k}} \begin{pmatrix} l_{i} \\ \vdots \\ l_{k} \end{pmatrix} \in \overline{G} : l_{i} \in \mathbb{Z}, \quad i=1, \dots, m \right\}.$ 0 (0) G closed and bounded => Ek és finite. Hence E=UER à countable. Let {fn} be a sequence in E. E bounded \Rightarrow ∃M>O such that 11fnlloo≤M, Hn i.e. [fn(x)] & M, AN & AXEG In particular, VXEE, $|f_n(x)| \leq M$, $\forall n$ If we arrange the points of E in a seguence $E = Z_{\tilde{j}} \leq Z_{\tilde{j}} \leq Z_{\tilde{j}}$, then $\forall j \geq 1$, (fr(zj)) is a bounded sequence.

Hence one can apply Lemma 4.3 to find a subsequence 1 gus of 1 fn & (using the same notation "n" for the index) such that $\forall \times \in E$, $g_n(\times)$ is convergent. We claim that gn is the required convergent subsequence of for in the nettic space (C(G), dos). (Note that we only have pointaise convegence for) constable many points at this moment. Since (C(G), dus) is complete, we only need to show that (gn & is a Cauchy sequence in (C(E), dos). By equicationity of \mathcal{E} , (\Rightarrow equicationity of $\{g_n\}$) 42>0, ZJ>0 such that |gn(x)-gn(y) < €, An & ∀x, yeG with 1x-y1<5.

Note that if k satisfies $\frac{2\delta}{Jm}$, then $\forall x \in G$, $\exists z_j \in E_k$ such that $(x-z_j) < \delta$. (See figure)

Hence $\left[g_{n}(x) - g_{n}(z_{j})\right] < \frac{\varepsilon}{3}$, $\forall n$

Therefore,

$$\begin{split} \left| g_{n(X)} - g_{m}(X) \right| &\leq \left| g_{n}(X) - g_{n}(z_{j}) \right| + \left| g_{n}(z_{j}) - g_{m}(z_{j}) \right| \\ &+ \left| g_{m}(z_{j}) - g_{m}(X) \right| \end{split}$$

$$<\frac{2e}{3}+|g_{n}(z_{j})-g_{m}(z_{j})|$$
.

Since $\{g_n(z_j)\}$ is convergent $\exists n_0 = n_0(z_j) \ge 0$ s.t.

$$|g_{i}(z_{j}) - g_{i}(z_{j})| < \frac{\varepsilon}{s}, \quad \forall n, m \geq n_{o}(z_{j}).$$

 $\Rightarrow \left[g_{n}(x) - g_{m}(x) \right] < \varepsilon, \forall n, m > n_{0}(z_{j}). \quad (z_{j} \text{ depends on } x)$

Now take
$$N_0 = \max_{z_j \in E_K} \max_{x_j \in E_K} \sum_{x_j \in E_K}$$

This completes the proof of the Therem. XF