(iv) A reason for studying
$$C_b(X)$$
 instead of $C(X)$ is
the fact that $C(X)$ may contain unbounded function
and supnam 11. 1100 doesn't define.
 $(eg: X = R = (-60, +\infty).)$

However, \tilde{m} some cases, it is still previble to define a metrix on $C(\mathbf{X})$.

eq
$$X = (\mathbb{R}^{m})$$
 $\overline{B}_{n}(0) = 4 \times (\mathbb{R}^{m})$; $(X|Sn\}, \forall n=1,2,3,\cdots$
 $\forall f \in C(\mathbb{R}^{m})$, define
 $d(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{1|f-g||_{(\infty,\overline{B}_{n}(0))}}{1+1|f-g||_{(\infty,\overline{B}_{n}(0))}}$
where $\| \cdot \|_{(\infty,\overline{B}_{n}(0))}$ is the supnoun on the
closed ball $\overline{B}_{n}(0)$.
Then d is a complete metric on $C((\mathbb{R}^{n}), (E_{X}!))$

(V) Recall:

C_b(I) may <u>not</u> have Bolzano - Weierstrass property,
<u>eg</u>. C_b(Io,IJ) = C[0,I]. let f_n(X) = Xⁿ, X ∈ IO,IJ.
Then ||f_n||_∞ = 1, ∀n.
Note that politurise limit f_n(X) → {1, X=1 0, otherwise.
⇒ no subsequence converges in C_b(IO,IJ).
In view of note (V), we need further condition to

1

help us to find convergence sequence in subset of G(X).

Note: Compact set is a closed precompact set.
Pf: let
$$f(X_n) \in E$$
.
 E precompact $\Rightarrow \exists X_n \Rightarrow z \in X$
 E closed $\Rightarrow z \in E$
Hence closed precompact \Rightarrow compact.
The other direction:
"Compact \Rightarrow closed precompact"

is trivial. #

29: Bolzano-Waierstrass
$$\Rightarrow$$

"ECR" is precompact \Leftrightarrow E is bounded." (Ex!)
Hence
"ECIR" is compact \Leftrightarrow E is closed a bounded."

Note: Clearly if
$$C$$
 is equicational then
any CCC is equicational.

Eq: If $X = G \subset \mathbb{R}^n$, $G^{\# B}$ open a bounded. Then $f \in C(\overline{G})$ is always minifamly continuous:

eg: A function f defined on a subset G of Rⁿ (G # Ø, open & bounded) is called

Hölder containates
if
$$\exists x \in (0, 1)$$
 such that
 $(*) |f(x) - f(y)| \leq \lfloor |x - y|^{\alpha}, \forall x, y \in \overline{G},$
for some constant $\lfloor .$

- The number & is called the Hölder exponent.
- The function is called <u>Lipschitz</u> cartinuous if (+) holds for $\alpha = 1$.
- For a fixed & E(0,1] & L>O, the family
 C = { f E((G): f Hölder/Lip. with exponent & and L>O }
 is an equicontinuous family.
 - $Pf = \forall \epsilon > 0, \text{ let } \delta > 0 \text{ such that } L\delta^{q} < \epsilon.$ $Then \forall f \epsilon \epsilon, \forall x, y \in G \text{ with } |x-y| < \delta,$ $|f(x) f(y)| \leq L |x-y|^{q} < L\delta^{q} < \epsilon.$

Prop4.1 : let
$$\mathcal{E}$$
 be a subset $C(\overline{G})$ where
 \overline{G} is nonempty convex in \mathbb{R}^n (with G open a bounded).
Suppose that each function in C is differentiable and
there is a uniform bound on their partial derivatives.
Then C is equications.
(if $\mathcal{E} = \{f \in C(\overline{G}): f$ differentiable, $\|[\stackrel{\geq f}{\Rightarrow} x_i]\|_{\infty} \leq M$, if f
is equications provided \overline{G} is convex.
 $\stackrel{(if Sen Some M)}{idep.of f}$

$$Pf: \forall x, y \in \overline{G},$$

$$\overline{G} \text{ convex} \implies x + t(y - x) \in \overline{G}, \quad \forall t \in \overline{I0}, 1].$$
Then
$$f(y) - f(x) = \int_{0}^{1} \frac{d}{dx} f(x + t(y - x)) dt$$

$$= \int_{0}^{1} \sum_{i=1}^{n} \frac{\Im f}{\Im x_{i}} (x + t(y - x)) (y_{i} - x_{i}) dt$$

$$= \sum_{i=1}^{k} \left(\int_{0}^{1} \frac{2\xi}{2k_{i}} (x+t(y-x))dt \right) (y-x_{i}) \\ \leq \int_{1}^{\infty} \int_{1}^{1} \int_{0}^{1} \frac{2\xi}{2k_{i}} (x+t(y-x))dt \right|^{2} |y-x| \\ \leq \prod M |y-x|, \\ \text{where } M = \text{unifour bd. on the partial derivatives.} \\ \text{Interchanging } x, y, we have \\ |f(y) - f(x)| \leq \prod M |y-x|, \forall x, y \in \mathbb{F} \\ \text{Then by the abave example, } z is equicantions. } \\ \\ \frac{Eg 4.1}{Equicantinuous, but unbounded} \\ \text{let } Z = E1, 13 \text{ and causider} \\ E = \{x \in CE + 13 = x(tx) = t, t \in E + 13\}. \\ \forall x \in E, |x(tx) - x(s)| \leq ||x'||_{\infty}|t - s| \leq |t - s|. \\ \Rightarrow E is equicantinuous (as above). \end{cases}$$

But E is unbounded (in (E1,13): $X_{n}(x) = \frac{x^{2}}{2} + n \in \mathcal{E}$ has $\|X_{\eta}\|_{\infty} = \frac{1}{2} + \eta \rightarrow +\infty \quad \text{as } n \rightarrow +\infty.$ (Clearly, {xn & has no convergent subsequence.) eg45 (Closed & Bounded but not Equicantinuous) Let $\mathcal{B} = \{f \in ([0, 1] : |f(x)| \leq), \forall x \in [0, 1]\}$ $\left(= \beta_{l}^{\circ}(o) \right)$ Then B is closed and bounded. To show that B is not equicontinuous, we only need to fand a subset of B which is not equicationor. Let $\{f_n(x) = \text{air } nx \}_{n=1}^{\infty} \subset \mathcal{B}$.

(laim: $\{f_n(x) = \min nx\}_{n=1}^{\infty}$ is not equicationous

Pf Suppose on the contrary that

$$1 = \sin nx + \sin^{2} - \cos -\sin nx$$
.
Then for $\xi = \frac{1}{2}$, $\exists \delta = 0$ such that
 $\forall n \ge 1$, $\& x, y \in [0, 1]$ and $1x - y \le 5$, we have
 $|Ainnx - sin ny| \le \frac{1}{2}$.

However, for any
$$\delta > 0$$
, if $n > \max\{\frac{\pi}{2\delta}, \frac{\pi}{2}\}$,
we have $X=0 \approx y=\frac{\pi}{2n} \in [0,1]$ with $|X-y| < \delta$
and $|\sin n \cdot 0 - \sin n \cdot \frac{\pi}{2n}| = |0-1| = 1 > \frac{1}{2}$

Which is a contradiction.

Lamma 4.3 Lot
$$A = \{z_j\}_{j=1}^{\infty}$$
 be a countable set and
 $f_n = A \rightarrow \mathbb{R}$, $n=1,2,\cdots$, be a sequence of functions
defined on A .
Suppre that for each $z_j \in A$,
 $\{f_n(z_j)\}_{n=1}^{\infty}$ is a bounded sequence in \mathbb{R} .
Then there exists a subsequence $\{f_n\}_{k=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$
such that $\forall z_j \in A$,
 $\{f_n(z_j)\}$ is convergent.

Pf: Since $f_n(z_i)$ is a bounded sequence (in \mathbb{R}),

$$\exists$$
 a subsequence f'_n such that $f'_n(z_i)$ is convergent.

Note that we have used the same index n to denote the subsequence S_{n_k} . The superscript 1 is to denote that it is convergent when evaluated at Ξ_1 .

Repeating the process, one can obtain sequences $\{f_n^{j}\} (j=0,1,7,\cdots, with f_n^{o}=f_n)$

such that

(i)
$$\{f_n^{j+1}\}\$$
 is a subsequence of $\{f_n^{j}\}\$, $\forall j = 0, 1, 2, ...$

(ii) $\{f_n^j(z_l)\}, \{f_n^j(z_2)\}, \dots, \{f_n^j(z_j)\}$ are convergent $(j \ge 1)$

Define $g_n = f_n^n$, $\forall n \ge 1$. (the diagonal sequence), then $\{g_n\}$ is a subsequence of $\{f_n\}$ and

for any fixed j=1,2,..., $g_n(z_j) = f_n^n(z_j)$

Thm 4.2 (Ascoli's Theorem)
Suppose that G is a bounded nonempty open set in
$$\mathbb{R}^m$$
.
Then a set $\mathcal{E} \subset C(\overline{G}) (= C_b(\overline{G}))$ is precompact
if \mathcal{E} is bounded (in support) and equicationous.