MATH3060 HW5 Due date: Nov 4, 2022 (at 11:00 am) 1. let a > 0, define a mapping T: CEa, a] \rightarrow CEa, a] by $Tx(t) = 1 + S_{o}^{*} s \times (s) ds$. Let x(t) = 1 on E-a, a]. Find $T^{n}x$, $\forall n > 0$. Does $\{T^{n}x\}$ converge in (CE-a, a], doo)? If so, what is the limit?

- 2. Show that the equation $ceox 2x^4 x = 1.00$ has a solution near x=0.
- 3. Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\Phi(\overset{\times}{y}) = (\underset{ain \ y + x^2}{ain \ y + x^2})$. Show that $\Phi(\overset{\times}{y}) = (\underset{o_0}{\circ})$ has a solution.
- 4. Let $K(x,t) \in C([0,1]\times[0,1])$. Show that there exists $\lambda > 0$ such that for all $g \in C[0,1]$, there exists a unique solution $Y \in C[0,1]$ of the integral equation $y(x) = g(x) + \lambda \int_{0}^{1} |K(x,t)y(t)dt$.

(End)