General Care :

Causider $\widetilde{F}(x) = (DF)(xo)[F(x+x_o) - y_o]]$

Then

$$
\widetilde{\vdash} (0) = 0
$$

$$
\begin{array}{lll}\n\widetilde{F} & \text{defined} & \text{on} & \text{open} & \text{set} \\
\widetilde{U} & = U - x_0 & = \{x = x + x_0 \in U\} & \text{with} & \text{OE} & \widetilde{U}\n\end{array}.
$$

and
$$
D\widetilde{F}(\omega) = (DF)(x_0) DF(x_0) = \overline{I}
$$
.

By the special case,
$$
\exists
$$
 r>0 such that
\n \exists $\widetilde{G}: B_{\underline{r}}(0) \rightarrow \widetilde{G}(B_{\underline{r}}(0)) \subset B_{r}(0) \subset \widetilde{U}$
\n $\Rightarrow f$. \widetilde{G} is the local inverse of \widetilde{F} .
\n $\begin{array}{rcl}\n\widetilde{G}(B_{\underline{r}}(0)) & \widetilde{F} \\
\vdots & \vdots \\
\widetilde{G} & \widetilde{G} \\
\end{array}$
\n $W = DF(x_{0})(B_{\underline{r}}(0)) + y_{0}$
\n $V = \widetilde{G}(B_{\underline{r}}(0)) + x_{0} \cdot (H(u_{0} V C U 1 x_{0} \in V))$
\n $V = \widetilde{G}(B_{\underline{r}}(0)) + x_{0} \cdot (H(u_{0} V C U 1 x_{0} \in V))$

and
$$
G: W \rightarrow V
$$
 by
\n $G(y) = G((DF)(x)(y-y_0)) + x_0$, $Hyew$.

Clearly
$$
G
$$
 maps W bijective into V.
\nSince $\tilde{F}(x) = (DF)(x_0) [F(x+x_0)-y_0],$
\nwe have $F(x+x_0) = (DF)(x_0) \tilde{F}(x) + y_0, \forall x \in B_1(0)$

$$
\Rightarrow
$$
 F(x) = (DF)(x₀) F(x-x₀) + y₀, x \in V

Hawa
$$
Yyew
$$

\n $F(G(y)) = (DF)(x_0) F(G(y)-x_0)+y_0$
\n $= y_0 + (DF)(x_0) F [G((DF)(x_0)(y-y_0))] (by definition)\n $= y_0 + (DF)(x_0) (DF^{1}(x_0)(y-y_0)) (sxe_0 F^{0}G = I)$
\n $= y_0 + y - y_0 = y$
\n $\therefore G \ddot{\sigma}$ the local inverse of \dagger
\n $\therefore G \ddot{\sigma}$ the local inverse of \dagger
\nThe remaining facts that $FE(k(kz)) \Rightarrow 66C^{k} \ddot{\mu}$ (law)
\n \therefore The special case \therefore $\ddot{\alpha}$ $\ddot{\alpha}$$

Let: A. C ^k -map $F:V \rightarrow W$ (V, Wopenin F ⁿ) as
\n $G: C^{k-diffeomaphism} = i$ F ⁻¹ exists and is also C ^k .\n
\n $\frac{Mde}{dA} = i$ (i) The IFT can be replaced as:\n
\n $\frac{1}{H} = i$ 15 C ^{thm} \rightarrow IR ⁿ $\in C_{\alpha}^{k}$ and\n
\n $\frac{1}{H} = i$ 15 C ^{thm} \rightarrow IR ⁿ $\in C_{\alpha}^{k}$ and\n
\n $\frac{1}{H} = i$ $\frac{1}{H} = 0$ C ^k \rightarrow R ⁿ $\in C_{\alpha}^{k}$ and $\frac{1}{H} = 0$ and $W = 0$ S. $\alpha \in U$ of the form α and $\frac{1}{H}$ is a constant, and $\frac{1}{H}$ is a constant.\n
\n $\frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H}$ \Rightarrow R. \n $\frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H}$ \Rightarrow R. \n $\frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H}$ \Rightarrow R. \n $\frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H}$ \Rightarrow R. \n $\frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H} = \frac{1}{H}$ \Rightarrow R. \n $\frac{1}{H} = \frac{1}{H} = \frac{1}{H}$

Thm3.5 Implicit FunctionTheorem let U be an open set in IR ^x IR ^F ^V Rm is ^a Cl map Suppose that xo yo EU satisfies F Xoyo ⁰ and DyF Yo Yo is invertible in Rm Then ¹ ^I an open setof the fam Vixen containing Xo Yo and ^a d map ⁹ Mt Vick with 9cxosYo suchthat F ^x 91 17 ⁰ ^t XEN ² 9 V V2 is Ck when F is Ck K ^k ⁰ ³ Moreover assume further that DyF is invertible in vine Then if ⁴ ^p ^K is another d map satisfying F ^x 41 5 ⁰ we have 4 9

$$
\underline{\text{Note:}} \quad \text{If} \quad F = \begin{pmatrix} F_1(x_1, \dots, x_n, y_1, \dots, y_m) \\ \vdots & \vdots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) \end{pmatrix}
$$

then

 \cup $\frac{\partial}{\partial y_m}$ $\frac{\partial F_m}{\partial y_1}$ \cdots $\frac{\partial F_m}{\partial y_m}$

is men e can be regarded as a lineartransfanation from \mathbb{R}^m to \mathbb{R}^m In general, for a map F such that DF (xo, yo) has rank m,

then one can rearrange the independent variables to make the mxm submatrix corresponding to the last in columns of the Jocabian matrix inventible, λ . In the situation of the theorem. Hence the condition that $D_{4}F$ (Xo, Yo) is invertible in the

Implicit Function Theorem can be generalized to

$$
\boxed{\text{rank }D\vdash(x_0,y_0)=m}.
$$

$$
\begin{array}{lll}\n\text{BS} & \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \frac{\partial f}{\partial y} \frac{\partial f}{\partial y} \\
&= \frac{1}{2} \int_{0}^{2\pi} f(x,y) \, dy & \frac{\partial f}{\partial y} \frac{\partial
$$

$$
\mathcal{D}\Phi \Big|_{(x_{0},y_{0})} \omega \text{ in which } \mathbb{R}^{n} \times \mathbb{R}^{m}.
$$
\n
$$
\text{Applying Image Function Then, } \exists \text{ } k \text{ and } C^{\perp} \text{ in terms}
$$
\n
$$
\mathcal{F} = (\mathbb{F}_{1}, \mathbb{F}_{2}) \cdot \mathcal{W}^{C[\mathbb{F}^{1} \times \mathbb{R}^{m}]} \longrightarrow \mathcal{V}^{C[\mathbb{F}_{1}^{C} \times \mathbb{R}^{n}]}
$$
\n
$$
(\times_{0}, y_{0}) = \mathcal{F}(\times_{0}, 0) = (\mathbb{F}_{1}(\times_{0}, 0), \mathbb{F}_{2}(\times_{0}, 0))_{,}
$$
\n
$$
\text{where } \mathcal{W} \text{ and } \mathcal{V} \text{ are open nodes, of}
$$
\n
$$
\Phi(x_{0}, y_{0}) = (x_{0}, 0) \text{ and } (x_{0}, y_{0}) \text{ respectively,}
$$
\n
$$
\text{and } \omega \in \mathbb{C}^{k} \text{ when } \mathbb{F} \text{ is } C^{k}.
$$
\n
$$
\text{By shrinking the nhds, we may assume}
$$
\n
$$
\mathcal{V} \text{ is of the } \text{four } \mathcal{W} \times \mathcal{V}_{2},
$$
\n
$$
\text{where } \mathcal{V}_{1} \text{ open in } \mathbb{R}^{N} \text{ containing } x_{0};
$$
\n
$$
\mathcal{V}_{2} \text{ open in } \mathbb{R}^{N} \text{ containing } y_{0}.
$$
\n
$$
\text{Now } \mathcal{V}(\times, z) \in \mathcal{W}^{-},
$$

 $(\mathbf{x},\mathbf{z}) = \underline{\Phi} \left(\underline{\Psi}_1(\mathbf{x},\mathbf{z}) \right) \underline{\Psi}_2(\mathbf{x},\mathbf{z}) \right)$

$$
= (\Psi_1(x,z), F(\Psi_1(x,z), \Psi_2(x,z))
$$
\n
$$
\times = \Psi(x,z)
$$
\n
$$
\times = \Psi(x,z)
$$
\n
$$
\times = F(\Psi_1(x,z), \Psi_2(x,z))
$$
\n
$$
\Rightarrow z = F(x, \Psi_2(x,z))
$$
\n
$$
\Rightarrow z = F(x, \Psi_2(x,z))
$$
\n
$$
= F(x, \Psi_2(x,z))
$$
\n
$$
= 0, \quad \forall x = \Psi_1(x,0) \in V_1.
$$
\n
$$
\therefore \varphi: V_1 \Rightarrow V_2 : x \mapsto \Psi_2(x,0) \text{ is the required map}
$$
\n
$$
S_1^1, \quad \varphi(x_0) = \Psi_2(x_0,0) = \varphi_2
$$
\n
$$
\Rightarrow \quad \{ \varphi(x_0) = \Psi_2(x_0,0) = \varphi_2 \} \text{ and } \hat{\phi}(x_0) = \Psi_2(x_0,0) = 0
$$
\n
$$
\text{and } \hat{\phi}(x_0) = \Psi_2(x_0,0) = 0
$$
\n
$$
\Rightarrow \quad \{ \varphi(x_0) = \varphi_2(x_0,0) = 0 \} \text{ and } \hat{\phi}(x_0) = \varphi_2(x_0,0) = 0
$$
\n
$$
\Rightarrow \quad \{ \varphi(x_0) = \varphi_2(x_0,0) = 0 \} \text{ and } \hat{\phi}(x_0) = \varphi_2(x_0,0) = 0
$$
\n
$$
\Rightarrow \quad \{ \varphi(x_0) = \varphi_2(x_0,0) = 0 \} \text{ and } \hat{\phi}(x_0) = \varphi_2(x_0,0) = 0
$$
\n
$$
\Rightarrow \quad \{ \varphi(x_0) = \varphi_2(x_0,0) = 0 \} \text{ and } \hat{\phi}(x_0) = \varphi_2(x_0,0) = 0
$$
\n
$$
\Rightarrow \quad \{ \varphi(x_0) = \varphi_2(x_0,0) = 0 \} \text{ and } \hat{\phi}(x_0) = \varphi_2(x_0,0) = 0
$$
\n
$$
\Rightarrow \quad \{ \varphi(x_0) = \varphi_2(x_0,0) = 0 \} \text{ and } \
$$

$$
(920)
$$
, $l_{y}r$ is invertible in $V_{1}xV_{z}$
\n $\Rightarrow \int_{0}^{1} D_{y}F(x,y+ t(y_{z}y_{1}))dt$ is nonsingular
\n $\int_{0}^{1}x(y_{1}) \times (x,y_{2}) \in V_{1}xV_{z_{e}}$ (as one may assume V_{z} is a ball)

Now it
$$
Y: V_1 \Rightarrow V_2
$$
 is another C-map s.t.
\n $F(x, Y(x)) = 0$,
\nthen $0 = F(x, Y(x)) - F(x, \varphi(x))$
\n $= (\int_0^1 2yF(x, \varphi(x) + x(yx) - \varphi(x)))dt/(4x) - \varphi(x)$
\n $\int_0^1 2yF(x, \varphi(x) + x(yx) - \varphi(x)))dt$ vanifyolar \Rightarrow
\n $+ (x) = \varphi(x) \qquad \forall x \in V_1$.
\nRemark: Implicit function Then *u* and Inverse function through
\none in fact equilibrium. How define
\n $F: U \Rightarrow \mathbb{R}^n$ as in assumption of the
\nInverse Function through the algebra of the
\n $F(x, y) \Rightarrow Tx \mathbb{R}^n$ (in the n-tan)
\n $(x, y) \mapsto F(x) - y$ ($\begin{array}{c} \frac{xe}{x}, \frac{we}{x} \\ \frac{xe}{x}, \frac{we}{x}}{x} \end{array}$)
\nweich is c!

Note that $F(x_0, y_0) = F(x_0) - y_0 = 0$, and $D_x\widetilde{\vdash}(X_0,Y_0)=DF(K_0)$ is invertible \Rightarrow DF (x_0, y_0) is of full rank (rank $DF(x_0, y_0) = n$) By Implicit Function Theorem, $\exists c'$ -map $\varphi(y)$ near y_o such that $\varphi(y_0) = x_n$ and $\widehat{F}(\varphi(y), y) = 0$. (Note the different in the notations) ie $F(\varphi(q)) - y = 0$ near y_0

 \therefore $X = \varphi(y)$ is the local inverse.

Concrete examples are omitted since it should be given in advanced calculus already. A few explicit examples are given in Prof Chou's notes.

53.4 Picard Lindelof Theorem fu Differential Equations

Let
$$
f
$$
 be a function defined on
 $R = [t_0-a, t_0+a] \times [x_0-b, x_0+b]$

where $(t_0, x_0) \in \mathbb{R}^2$ and $\alpha, b > 0$.

We consider Cauchy Problem (Initial Value Problem)

$$
(IVP) \left\{ \begin{array}{l} \frac{\partial X}{\partial t} = f(t, x) \\ \pi(t_0) = x_0 \end{array} \right.
$$

 $i.e.$ find a function $x(t)$ defined in a perhaps smaller interval

$$
\chi: \text{Let } \alpha' \text{ and } \text{Let } \alpha' \text{ and } \text{Let } \alpha \text{ and } \text{Let } \alpha \text{ and } \alpha \text{ and } \text{Let } \alpha \text{ and } \alpha
$$

 $\int a$ same $0 < a' \le a$, such that

Xlt is differentiable f ^x to Xo and If Ct fit X1tD HAEItoaltotal

493.14 Consider
$$
\begin{cases} \frac{dy}{dx} = 1+x^2 \\ \frac{y}{x(0)} = 0 \end{cases}
$$

\nHere $f(x,x) = 1+x^2$ is smooth on $[=q,qx\in b,b]$ for any $a, b > 0$.

\nHowever, the solution $x(x) = \frac{1}{3}ax + b$

\ndefined only on $(-\frac{\pi}{2}, \frac{\pi}{2})$.

\nFrom the second way on $(-\frac{\pi}{2}, \frac{\pi}{2})$.

\nFind the second way, we have $a' < a$.

\nRecall: $a' > 0$ for all a and b for all a and

(1) In particular, $f(t, \cdot)$ is Lip. to in x, V + E[to-a, tota] (10) L is called a Lipschitz constant.

$$
(i^{v})
$$
 If L \overline{G} a Lip. constant $f_{\alpha} f_{\beta}$, then any $L' > L$ \overline{G} also
a Lip. constant.

$$
(V) \text{ Nst all } ct. \text{ functions } satify the Lip. condition.
$$
\n
$$
-29. \text{ f}(t,x) = \text{t}x^{2} \text{ is } dt \text{, but not high. near } 0.
$$

(vi) If R = [to-a, totaJxIxo-b, xotbJ and
\n
$$
f(t,x) = R \Rightarrow R \quad \text{is } C'
$$
\n
$$
f(t,x) = x + 2
$$
\n
$$
f(t,x) = x + 2
$$
\n
$$
\text{with } f(t,x) = x + 2
$$
\n
$$
\text{with } f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\infty}^{\infty} f(t,x) dx
$$
\n
$$
f(t,x) = \frac{1}{2} \int_{-\
$$

Thm3.10 (Prcard-Lindelöft theouu)
(Fundamental Theorem of Existence and Uniqueness of Pifferential Equations)
let f be continuous function on
$R= [t_0-a, t_0+a_0]$ × [x_0b, x_b] ((t_0,x_0)\in R^2, a, b>0)
sabilities the Lipschike condition on R (uniform in t).
Then $\exists a' \in (0, a]$ and $\times eC'[t_0-a', t_0a']$
such that
• x_0-b \le X(4) \le x_0+b , Y \le C[400', t_0+a'] and ...
• solving the Cauchy Problem (IVP)
Furthermore, x ù the unique solution ii $[t_0-a', t_0+a']$.
Note: a' can be taken to be any number satisfying $D<0<$ ratio {a, b, t_0, t_1, t_2, t_3, t_4, t_5, t_6, t_6, t_6, t_6, t_7, t_7, t_8, t_9, t_9, t_1, t_1, t_2, t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_7, t_7, t_8, t_9, t_9, t_1, t_2, t_3, t_4, t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_7, t_8, t_9, t_1, t_2, t_3, t_4, t_6, t_7, t_7, t_8, t_9, t_9, t_1, t_2, t_3, t_4, t_1, t_1, t_2, t_3, t_4, t_1, t_2, t_3, t_4, t_1, t_2, t_3, t_4, t_1, t_2, t_3, t_4, t_4, t_5, t_6, t_6, t_7, t_7, t_8, t_9, t_9, t_1, t_2, t_3, t_4, t_1, t_1, t_2, t_3, t_4, t_1, t_1, t_2

where $M = \text{sup} \{ |f(t,x)| = (t,x) \in R \}$ &

 $L = Lip.$ const. for $f.$

Prop3.11 : Setting as in Thm310, every solution \times of (IVP)
from [to-a', to+a'] to [to-b, x+b] satisfies
How [to-a', to+a'] to [to-b, x+b] satisfies
How equality, though \times (4) = \times = \times = $\frac{4}{16}$ $5(4, x(4))dx$ (5,7)
Conversely, though \times (4) = \times = $\frac{4}{16}$ $5(4, x(4))dx$ (5,7)
So 'a and solves (IVP).
Proof of P _{real} - Lindalöf Thenew:
Proof of P _{real} - Lindalöf Thenew:
For a(>o to be chosen later, we let \times = \times = $\frac{4}{16}$ \times = $\frac{1}{16}$ \times

Refûle T a X by	(Tφ)(4) = x - 5 ⁺ _{4,5} f(s, φ(s)) ds
(Thù ÷ well-defined ∞ φ(s) ∈ [x - b, x - t], 1)	
(Marly	1 $\sqrt{1^2 + 6^2 + 1^2}$ $\sqrt{1^2 + 6^2 + 1^2}$
(Tφ)(t ₀) = x ₀	

To show
$$
T\varphi\in\Sigma
$$
, we still need
 $(T\varphi)(t)\in [x_{\sigma-b}, x_{\sigma}+b]$.

$$
let M = \sup_{(x,x)\in R} |f(t,x)|.
$$

Then

\n
$$
\forall t \in [t_{0} - a', t_{0} + a'],
$$
\n
$$
\left| (\top \varphi)(t) - x_{0} \right| = \left| \int_{t_{0}}^{t} f(s, \varphi(s)) ds \right| \leq M |t - t_{0}|
$$
\n
$$
\leq M a'
$$

If we choose $0 < a' < \frac{b}{M}$, then $\left|\left(\mathsf{T}\phi\right)\!({\mathsf{t}})-{\mathsf{x}}_0\right| \,\,\leq\, \mathsf{b} \quad \Rightarrow \quad \mathsf{T}\phi\in\,\mathsf{X}\,\, .$

This is,
$$
f_{q_1} \circ f_{q_2} \circ f_{q_3}
$$

\n
$$
\left\{ \begin{array}{ll} T: X \Rightarrow X & \text{is a self-tmap from a} \\ \text{(amplitude matrix) space } (X, d_{q_2}) \text{ is itself.} \end{array} \right.
$$
\nTo see whether T is a contradiction, use that

\n
$$
\left\{ \left(f \phi_2 - T \phi_1 \right) (L) \right\} = \left| \left(X_{d} \int_{x_0}^{x} f(s, \phi_2(s)) ds \right) - \left(X_{d} \int_{x_0}^{x} f(s, \phi_1(s)) ds \right) \right|
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - f(s, \phi_1(s)) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds \qquad (b_1 \text{ Lip odd})
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s, \phi_2(s)) - \phi_1(s) \right| ds
$$
\n
$$
\leq \int_{x_0}^{x} \left| f(s
$$

 $d_{\infty}(\tau\varphi_{2},\tau\varphi_{1})\leq \gamma d_{\infty}(\varphi_{2},\varphi_{1})$ with $\gamma=La^{\prime}<1$.

In confusion,
$$
\frac{d}{d}
$$

\n $0 < \frac{d}{d}$, $\frac{d}{d}$, $\frac{d}{d}$, $\frac{1}{L}$, $\frac{1}{5}$,
\n $+$
\n

Notes ^l ExistencepartofPicard LindelofTha still holds with flt ^X its only without Lip condition

However, the solution may not be unique.

$$
\underline{\mathcal{Q}} = \text{Cnsider } f(\underline{A}, \underline{x}) = |x|^{\frac{1}{2}} \text{ or } |\underline{R} \times \underline{R} \neq \overrightarrow{b} \text{ } d\overrightarrow{b},
$$

but not Lip. $c\overrightarrow{b}$.

$$
(
$$
 $($ $Cauchy Problem)$ $\left\{\n \begin{array}{l}\n \frac{dx}{dt} = |x|^{1/2} \\
 \end{array}\n \right\}$ on \mathbb{R} \n $x(0) = 0$

has solutions $\star_i(t) = 0$ and

•
$$
x_2(4) = \begin{cases} \frac{1}{4}t^2, & \text{if } 0 \\ -\frac{1}{4}t^2, & \text{if } 0 \end{cases}
$$

 C_1 check: X_2 is differentiable with $\frac{dX_2}{dt} = \frac{1}{2}|H| = |X_2|^{1/2}$, $H_1 \in K$ $\chi_{2(0)} = 0$

² Uniqueness holds regardless of the size of the interval of existence.

(Proof omitted as it is more in the cuniculum of ODE. see Prof Chou's notes faceproof

³ The proof waks fa system of ODES just the ^X and ^f become vecta valued

$$
T_{nm3.13} \left(\frac{\rho_{icard-Lindulij} + \eta_{lordl} + \eta_{lordl}
$$

(4) The Picard-Lindelof Therem for system can be applied to initial value problem for higher order ordinary differential aguations:

equations :
\n
$$
\frac{d}{dx} \times dx = f(t, x, dx) \times dx
$$
\n
$$
\frac{d}{dx} \times dx
$$
\n
$$
\
$$

By letting
$$
\vec{x} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dx}{dt} \\ \frac{d^m x}{dt^{m-1}} \end{pmatrix}
$$
, then

$$
\frac{d\vec{X}}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{d^{2}x}{dt^{2}} \\ \vdots \\ \frac{d^{m}x}{dt^{m}} \end{pmatrix} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{d^{2}x}{dt^{2}} \\ \vdots \\ \frac{d^{m}x}{dt^{m}} \end{pmatrix} = \begin{pmatrix} f \\ f_{2} \\ \vdots \\ f_{m} \end{pmatrix} = f(t, \vec{X})
$$

$$
width \quad \pi^*(t_0) = \begin{pmatrix} x_0 \\ y_1 \\ \vdots \\ x_{m-1} \end{pmatrix}
$$