
 

Ref let E be a subsetof a metric space Id

I A paint x is called an interiorpart of E

if I an open set G sit XEG GCE

e The setof all interiorpointsof E is calledthe
interior of E denoted by E
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82.5 Elementary Inequalities fa Functions

Recall

Young's Inequality

For a b so and p 1

ab E of by where q is given by
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and equality holds I aP b
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q É I is called the conjugate of P
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Thm2.10 Holder's Inequality

Let f g e Ria b Riemann integrable and p 1

Then

Jalfegalaxe Sab Pax Sigulda

where 8 1 is the conjugateof p

Equality holds

either a for g o almosteverywhere

or b I constant i o sit

Iga18 A IfixP almost everywhere

I constants hi Izzo not bothzero such that

fix IP del gex
8

a e

Note If we denote 11flip L If Pdx
Thea the Holder Inequality can bewritten as

Sbalfexigaldx s 11flip11g11



Pf If Afllp o a 119118 0

Then 5 0 n g o almosteverywhere

Hance 0 5 Ifixsgaldx
and the inequality holds trivially

Assume now that 11511 o and 11911g 0

By Young's Inequality we have for any E 0

Hedges Efx 9 I

EPHIDIP 191118

p
t
g

q
feta by

fingers axe SaltaPdx t fees B tax

Aflit 4,1191188

Choose E 0 sit Ellfll 8119118



ie epts
11918

type

Sabas d

Six Pax

E
119118

o

115111 8

Then

Sbalfingoldxe 91151ft 1,1191 of

ftp.tq ePllfllPp

11911888

11511,8
HE

fuseigftty
Pj L

11911,11 11,141 83

11911811511
P Eq

Ngl Http



From the proof Equalityholds

Haga
EP fat 19618

q go
almosteverywhere

p

with E given above

EP fix
P 19018 almosteverywhere

gas EP's fix 18 almosteverywhere

I kept o sit 194318 Alfa I a e

Conversely if Igex 18 1 fix P a e Insane a o

we clearly have the Equality

Note Limiting cases note Riemannintegrable
bounded

i poi gates

Sablfinges dx E 11511 11911

Ci p to 8 21

Sabifixsgas dx E 11511,11911



Thm2.11 Minkowski's Inequality

V f gE Rta bJ and p l
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Pf of Minkowski's Inequality
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ch3 The Contraction Mapping Principle

3.1 CompleteMetricSpace

Def let I d be a metricspace

1 A sequence IXas in I d is a Cauchysequence

if HE 0 I no sit dexn Xm E F n m z n o
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