26f = $1e^x$ E be a subset of a metric space (X, d) .
(1) A point x is called an interior point of E
$3d$ \exists an open set G s.t. $x \in G$ g $G \subseteq E$.
(2) The set of all interior points of E is called the infinite of E , denoted by E° .

\n $\text{Notes: } \dot{\cup} \in \text{'} \quad \text{if} \quad \text{if$
--

eg218 ^E QATo ^I in I TO13 days lx ^y ¹ Then EO G E to ^I 2E

9.19 (at D be a "domain" in
$$
\mathbb{R}^2
$$
 bounded by several cts. cmws S.

\nThen $\partial D = S^1$

\n
$$
\overline{D} = DUS = DVSD
$$
\n
$$
\overline{D} = DUS
$$

$$
Q(2.21) : (X = C[0, 1], d_{\infty}(f, g) = 115 - g(1_{\infty})
$$
\n
$$
let S = \{ f \in K : d < f(x) \le \beta, \forall x \in [0, 15 \}
$$
\n
$$
c) \quad Q(1) \quad Q(2) \quad Q(3) \le \beta = \{ f \in K : d \le f(x) \le \beta, \forall x \in [0, 15 \}
$$
\n
$$
C = \{ f \in K : d \le f(x) \le \beta, \forall x \in [0, 15 \} \Rightarrow S.
$$
\n
$$
Thex C = \{ d \le f(x) \le \alpha \} \{ f(x) \le \beta \}
$$
\n
$$
f(x) \le \beta
$$
\n
$$
f(x) \le \
$$

Conversely,
$$
4 \le C
$$
, define
\n $S_{n}(x) = max\{f(x), d+\frac{1}{n}\} \in \mathbb{Z}^{-}C[0,1], \forall n$.
\n $\Rightarrow S_{n} \in S$, $\forall n$ large β
\n $\Rightarrow S_{n} \in S$, $\forall n$ $\frac{d+\frac{1}{n}-\cdots}{d+\frac{1}{n}-\beta}$
\n $\Rightarrow S_{n} \in S$, $\forall n$ $\frac{d+\frac{1}{n}-\cdots}{d-\frac{1}{n}-\beta}$
\nNote $d_{n}(f_{n},S) = max_{x\in[n]} |f_{n}-f_{n}|$
\n $\leq d+\frac{1}{n}-d=\frac{1}{n}\Rightarrow 0$ as $n\Rightarrow\infty$
\n $\therefore f\in\overline{S}$ as $f_{n}\in S$ $\geq f_{n} \Rightarrow f$. Hence $C\subset\overline{S}$.
\n(2) $\underline{Q_{min}}: S^{0} = \{f\in \mathbb{X}: \alpha < f_{n} \leq f_{n} \leq \beta, \forall x \in [0,1]\}$

 $(Bf:Ex!)$

82.5 Elementary Inequalities fa Functions Recall

$$
\frac{Y_{aug/s} \text{ Inequality}}{F_{c} \text{ a, b > 0 and } P>1}
$$
\n
$$
\boxed{ab \leq \frac{a^{p} + b^{g}}{p} \text{ where } q \geq 3 \text{ given by}}
$$
\n
$$
and "equality holds" \iff a^{p} = b^{g}.
$$

$$
\frac{Note: g = \frac{P}{P-1} > 1 \text{ is called the conjugate of P.}
$$
\n
$$
\left(\frac{Real Pf : Stady the minimum of P(a) = \frac{aP}{P} + \frac{bB}{B} - ab \cdot (Ex!) \right)
$$

Note: If p=2, it is the elementary inequality $2ab \leq a^{2} + b^{2}$

Thus 2.10 (Hölder's Inequality)

\nLet
$$
f, g \in R[0, b]
$$
 (Riemann integrable) and $g>1$.

\nThen

\n
$$
\int_{a}^{b} \{f(x)g(x) \, dx < \left(\int_{a}^{b} \{f(x)\}^{\frac{1}{b}} \right) \left(\int_{a}^{b} (g(x))^{\frac{1}{b}} \right)^{\frac{1}{c}} \}
$$
\nwhere $g = \frac{p}{p-1}$ is the conjugate of p.

\n*either* $(a) \, f \circ a \, g = 0$ almost everywhere.

\n*or* $(b) \, \pm \, \text{constant} \, \lambda > 0 \, \text{s.t.}$

\n
$$
\left| \frac{g(x)}{s} \right|^{s} = \lambda \, |f(x)|^{s}
$$
\nalmost everywhere.

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{s.t.}$

\n
$$
\left| \frac{g(x)}{s} \right|^{s} = \lambda \, |f(x)|^{s}
$$
\nalmost everywhere.

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \, \pm \, \text{constant} \, \lambda > 0 \, \text{st.}$

\n*(* $\Rightarrow \$

$$
\int_{0}^{b} |f(x)g(x)|dx \leq \|f\|_{p} \|g\|_{p}
$$

 $f(x) = \sum f \, ||f||_p = 0$, or $||g||_q = 0$ Then $f=0$ a $g=0$ almost everywhere. Have $O = \int_{0}^{b} |f(x)g(x)| dx$ and the inequality tolds frivially. Assure now that $\|f\|_p > 0$ and $\|g\|_q > 0$. By Young's Inequality, we have for any 60 $|f(x)q(x)| = (ef(x) \cdot \frac{f(x)}{f})$ $\leq \frac{\epsilon^{\frac{p}{2}}|f(x)|^{p}}{p}+\frac{|g(x)|^{g}}{p^{g}}$ yxela,bJ $\Rightarrow \int_{0}^{b} |f(x)g(x)| dx \leq \frac{\varepsilon^{f}}{f} \int_{0}^{f} |f(x)|^{p} dx + \frac{1}{f(\varepsilon^{2})} \int_{a}^{f} |g(x)|^{g} dx$ = $\frac{\varepsilon^2}{f}$ $\|f\|_p^p + \frac{1}{4\varepsilon^2} \|g\|_q^2$ Choose $\epsilon > 0$ st. $\epsilon^{p} \|f\|_{p}^{p} = \frac{1}{2} \|f\|_{p}^{g}$

$$
e^{2\pi i/2} = \frac{11 \sin \frac{1}{2}}{11 \sin \frac{1}{2}} \left(\frac{1}{2} \frac{\int_{a}^{b} (9 \cos \frac{1}{2} dx)}{\int_{a}^{b} (9 \cos \frac{1}{2} dx)} \right)
$$

$$
\Rightarrow \qquad \xi = \frac{\|g\|_{\mathfrak{g}}^{\frac{\mathfrak{g}}{\mathfrak{f}+\mathfrak{g}}}}{\|f\|_{\mathfrak{g}}^{\frac{\mathfrak{g}}{\mathfrak{f}+\mathfrak{g}}}} > 0
$$

Theorem

\n
$$
\int_{a}^{b} |f(x)g(x)| dx \leq \frac{g!}{f!} \left\|f\right\|_{f}^{p} + \frac{1}{g} \frac{1}{g} \left\|g\right\|_{g}^{g}
$$
\n
$$
= \left(\frac{1}{f} + \frac{1}{g}\right) g^{2} \left\|f\right\|_{f}^{p}
$$
\n
$$
= \frac{|\left|g\right\|_{g} \frac{f^{2}}{f^{2} + g}}{\left\|f\right\|_{f}^{p}} \cdot \left\|f\right\|_{f}^{p}
$$
\n
$$
= \frac{|\left|g\right\|_{g} \left\|f\right\|_{f}^{p} \left(1 - \frac{f^{2}}{f^{2} + g}\right)}{\left\|f\right\|_{f}^{p}}
$$
\n
$$
= \frac{|\left|g\right\|_{g} \left\|f\right\|_{f}^{p} \left(1 - \frac{f^{2}}{f^{2} + g}\right)}{\left\|f\right\|_{f}^{p}}
$$
\n
$$
= \frac{|\left|g\right\|_{g} \left\|f\right\|_{f}^{p} \cdot \frac{g}{f^{2} + g}}{\left\|f\right\|_{f}^{p}}
$$
\n
$$
= \frac{|\left|g\right\|_{g} \left\|f\right\|_{f}^{p} \cdot \frac{g}{f^{2} + g}}{\left\|f\right\|_{f}^{p}}
$$
\n
$$
= \frac{|\left|g\right\|_{g} \left\|f\right\|_{f}^{p} \cdot \frac{g}{f^{2} + g}}{\left\|f\right\|_{f}^{p}}
$$

From the proof,
$$
1 = \text{quadry.} \cdot \text{fodds}''
$$

\n
$$
\Leftrightarrow (1 - \frac{\text{f(x)}(x)}{\text{g(x)}}) = \frac{\text{g'(x)}^2}{\text{g'(x)}} + \frac{1 \text{g(x)}^2}{\text{g'(x)}} \text{ almost enough}''
$$
\n
$$
\Leftrightarrow (1 - \frac{\text{g(x)}^2}{\text{g'(x)}}) = \frac{1 \text{g(x)}^2}{\text{g'(x)}} \text{ almost enough}''
$$
\n
$$
\Leftrightarrow \frac{1 \text{g(x)}^2}{\text{g'(x)}} = \frac{1 \text{g(x)}^2}{\text{g'(x)}} \text{ almost only when}
$$
\n
$$
\Leftrightarrow \frac{1 \text{g(x)}^2}{\text{g'(x)}} = \frac{1 \text{g(x)}^2}{\text{g'(x)}} \text{ almost only when}
$$
\n
$$
\Leftrightarrow \frac{1 \text{g(x)}^2}{\text{g'(x)}} = \frac{1 \text{g(x)}^2}{\text{g'(x)}} \text{ and } \frac{1 \text{g(x)}}{\text{g'(x)}} \text{ and } \frac{1 \text{g(x)}}{\text{g'(x)}}.
$$
\n
$$
\Leftrightarrow \frac{1 \text{g(x)}}{\text{g'(x)}} = \frac{1 \text{g(x)}}{\text{g'(x)}} = \frac{1 \text{g(x)}}{\text{g(x)}} = \frac{1 \text{g(x)}}
$$

Thus,
$$
U \in \mathbb{R}
$$
 and U .

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nTherefore, $U = \frac{1}{2}$, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nTherefore, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nTherefore, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nTherefore, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, $U = \frac{1}{2}$.

\nThus, $U = \frac{1}{2}$, U

Note: Minkowski's Inequality follows from the Hölder's Inequality. However we will provide an alternate proof without using Holder's Inequality which is simpler to prove the "equality" case.

Lemma:
$$
\varphi(x) = t^p
$$
, $p>1$, is $\sin\alpha t$ and $\pi(0, \infty)$.
\n
$$
(\hat{u}, \hat{f}^{(n)}, \hat{f}^{(n)}) = (t^p + t^p)
$$
\n
$$
(\hat{u}, \hat{f}^{(n)}, \hat{f}^{(n)}) = (t^p + t^p)
$$
\n
$$
[t^p - t^p + t^p]
$$
\n
$$
[t^p - t
$$

$$
\mathcal{A}(\forall) \leqslant \bigcirc, \quad A \vee \in \mathcal{I}^{0} \setminus \bigcap
$$

This also shows the "equality" case.

Pf of Minkowski's Inequality																																																																																												
Tf If $l_p = 0$, then $f(x) = 0$ $\Delta \cdot e$. $x \in Ia, bJ$,																																																																																												
He the inequality in fact an equality.																																																																																												
Süülarly	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

$$
= (||f||_{pt} ||g||_{p})^{p} \left[\frac{||f||_{p}}{||f||_{pt}||g||_{p}} \int_{\alpha}^{b} |f(x)| dx + ||g||_{p} \right]
$$
\n
$$
= (||f||_{pt} ||g||_{p})^{p} \left[\frac{||f||_{p}}{||f||_{pt}||g||_{p}} + \frac{||g||_{p}}{||f||_{pt}||g||_{p}} \right]
$$
\n
$$
= (||f||_{pt} ||g||_{p})^{p} \left[\frac{||f||_{p}}{||f||_{pt}||g||_{p}} + \frac{||g||_{p}}{||f||_{pt}||g||_{p}} \right]
$$
\n
$$
= (||f||_{pt} ||g||_{p})^{p} \left[\frac{||f||_{p}}{||f||_{pt}||g||_{p}} + \frac{||g||_{p}}{||f||_{pt}||g||_{p}} \right]
$$
\n
$$
= (||f||_{pt} ||g||_{p})^{p} \left[\frac{||f||_{p}}{||f||_{p}||g||_{p}} + \frac{||g||_{p}}{||f||_{pt}||g||_{p}} \right]
$$
\n
$$
= (1) |f + g||_{p} \le ||f||_{p} + ||g||_{p}
$$
\n
$$
= (2) |f + g| = |f| + |g| \quad a.e. \quad (8y \text{ lemin})
$$
\n
$$
= 3 \quad \frac{|\{f(x)\}|\le |g(x)|}{||f||_{p}} \quad a.e. \quad (8y \text{ lemin})
$$
\n
$$
= 4 \quad \frac{|\{f(x)\}|\le |\{f(x)\}|\le |\{f(x
$$

ch3 The Contraction Mapping Principle

§3.1 Complete Metric Space

Def	Let (X, d) be a notice space.
(i) A sequence $\{x_n\}$ in (X, d) is a Cauchy sequence	
If $\forall \epsilon > 0$, $\exists n_0$ s.t. $d(x_n, x_m) < \epsilon$, $\forall n_m \ge n_0$.	
(2) (X, d) is complete if every Cauchy sequence in (X, d)	
(converges.)	
(3) A subset E is complete if the induction metric shape	
(E, d) is complete. (i.e. $d = d _{E \cap E}$)	
(i.e. every Cauchy sequence in E converges with $4i\pi$ if E .)	
Note: Convergat sequence is a Cauchy sequence (Ex!)	
Note: Convergart sequence is a Cauchy sequence (Ex!)	
(a) Every complete set in X is closed.	
(a) Every complete set in X is closed.	
(b) $\exists f \times f$ is a complete, then every closed set in X	
is complete.	

Pf:	(a) Let FCX , $x \in$ Cample.
Suppose $\{x_n\} \subset F$ with $x_1 \Rightarrow x \in X$.	
By note, $ix_n \succeq 0$ c. Cauchy seg. $\overline{u}_1 \in$	
Then completeness of $E \Rightarrow x_n \rightarrow z \in E$.	
Using the cases of $L\overline{u}$ and $\overline{u} \Rightarrow x = \overline{z} \in$	
2. $\overline{L} \circ \csc d$.	

(b) Let
$$
(\Sigma, d)
$$
 be complete $x \in \tilde{a}$ closed in X .
\nThen every Cauchy $eq.3x\cdot s$ in E is a Cauchy $seq \neg X$.
\n
\nCoupletences of $X \Rightarrow \exists x \in X$, $s.t. x\cdot y \Rightarrow x$.
\n
\n $Seq3:1: (R, standard) \times conflet$
\n $Eq.b1, (-\alpha, b1), [a, \omega) caplet$
\n $Eq.b2$ (b) $find$ only the
\n $Eq.b2$ (b) $find$ complete $(::x,-b-b+G,b2)$
\n Q is not complete.

4.1.
$$
(\overline{X} = (a, b), d_{\omega})
$$
 is complete:

\nCauchy

\n4. $4\sqrt{2}$

\n5. $4\sqrt{2}$

\n6. $4\sqrt{2}$

\n7. $4\sqrt{2}$

\n8. $4\sqrt{2}$

\n9. $4\sqrt{2}$

\n10. $4\sqrt{2}$

\n2. $4\sqrt{2}$

\n3. $4\sqrt{2}$

\n4. $4\sqrt{2}$

\n5. $4\sqrt{2}$

\n6. $4\sqrt{2}$

\n7. $4\sqrt{2}$

\n8. $4\sqrt{2}$

\n9. $4\sqrt{2}$

\n10. $4\sqrt{2}$

\n11. $4\sqrt{2}$

\n12. $4\sqrt{2}$

\n13. $4\sqrt{2}$

\n14. $4\sqrt{2}$

\n15. $4\sqrt{2$