Note = (i) In(1), it suffices to check G of the form

$$B_{z}(x)$$
 for all small $z > 0$, or even just
 $B_{z}(x)$, $\forall n \ge 1$ (See the proof of Prop 2.9(a)).
 $\exists x \in z$

 $(ii) \quad \partial E = \partial(X \setminus E), \quad \forall E \subset X, \quad E \mid$

ЭЕ

Pf of (iii): Only need to show that DECE if E is losed. let XEDE, then by definition $B_{\perp}(x) \wedge E \neq \phi$ ($x B_{\perp}(x) \wedge (X \setminus E) \neq \phi$) \Rightarrow = Xn $\in B_{\perp}(x) \cap E$ $\Rightarrow d(X_{\alpha}, \chi) < \frac{1}{N}, \forall n$ $\therefore X_N \rightarrow X$ Some E is closed, Prop 2.7 => XEE. Surce XEDE is arbitrary, DECE. Prop 2.9 Let E C (&, d). Then (a) $x \in \overline{E} \Leftrightarrow B_r(x) \cap E \neq \emptyset$, $\forall r > 0$. (b) $A \subset B \Rightarrow \overline{A} \subset \overline{B} \quad \forall A, B \subset (X, d)$ (c) E is closed (d) T = 0 < C = closed set, C > E <(i.e. E is the smallest closed set containing E)

 $Pf(a) \Rightarrow$

 $\begin{array}{l} x \in \overline{E} \implies x \in \overline{E} \ \alpha \quad x \in \partial \overline{E} \ \end{array}$ $If x \in \overline{E}, \ Hen \quad x \in B_{F}(x) \cap \overline{E}, \ \forall r > O \\ \implies B_{r}(x) \cap \overline{E} \neq \phi, \forall r > O \ \end{array}$ $IJ x \in \partial \overline{E}, \ Hen \quad by \ definition \ of \ boundary \ point, \\ \forall \ open set \ G \ containing \ x, \ G \in \overline{E} \neq \phi \ (e \ G \setminus \overline{E} \neq \phi) \$ $Suice \ B_{F}(x) \ is \ open \ and \quad x \in B_{r}(x), \ \forall r > o, \ ue \ have \ B_{r}(x) \cap \overline{E} \neq \phi, \forall r > o. \ \end{array}$

 (\Leftarrow) If $x \in E$, we are done. $(x \in E \subset E)$ If $x \notin E$, then for any open set G containing x, $x \in G \setminus E$.

Hence $G \mid E \neq \phi$. To show that $G \cap E \neq \phi$, we choose $r_{0>0}$ s.t. $B_{r_{0}}(x) \subset G$ (it is possible since G is open) Then by assumption, $B_{r_{0}}(x) \cap E \neq \phi$ and hence $G \cap E(=B_{r_{0}}(x) \cap E) \neq \phi$. If

(b) (et xEA.
By partice),
$$B_{\mu}(x) \cap A \neq \phi$$
, $\forall r > 0$
Surve $A < B$, $B_{\tau}(x) \cap B \neq \phi$, $\forall r > 0$
Part (a) again, $x \in B$.
 $\therefore A < B$.
 $\therefore A < B$.
(c) Consider a seq $\{x_n\} \in E$ such that $x_n \rightarrow x$
for some $x \in X$. We need to show that $x \in E$. (Proper)
Suppose not, then $X \notin E$.
Part (a) $\Rightarrow \exists \varepsilon_0 > 0$ such that $B_{\varepsilon}(x) \cap E = \Phi$
For this $\varepsilon_0 > 0$, $\exists n > 0$ such that
 $x_n \in B_{\varepsilon}(x) \quad \forall n > n_0$.
Then $B_{\varepsilon}(x) \cap E = \phi \Rightarrow x_n \in \partial E \setminus E$ for $n > n_0$.
In particular $\{x_n\}_{n=n_0}^{\infty}$ is a seq. in ∂E and
 $x_n \rightarrow x$.
By Note (in above and $Prop^{2} \cdot T$, $x \in \partial E < E$
which is a contradiction.

(

(d) By (c), E is closed x E > E $\therefore E \in \{C : C = closed set, C > E\}$ $\Rightarrow E = n < C : C = closed set, C > E\}$ Conversely, let C be a closed set x C > E. Then by (b) and (iii) of Further Notes above, $E \subset C = C$ $\Rightarrow E \subset n < C : C = closed set, C > E\}$