Def: let E be a set in a matrix space (X,d)	
(1) A part $x \in X$ (not necessary in E) is called a	
boundary point of E J	
Y open set $G \subseteq X$ containing x ,	
$G \cap E \neq \emptyset$	$(G \cap (X \setminus E) \neq \emptyset)$
(2) The set of boundary points of E will be divided by	
DE and is called the boundary of E.	
(3) The closure of E, denoted by E, is defined to be	
E = E \cup 3E.	

Note: (1) In (1), it suffices to check G of the form

\n
$$
\beta_{\epsilon}(x)
$$
\n
$$
\
$$

 $\breve{}$ əE

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$
\mathfrak{Q} : F_{\alpha} B_{\gamma}(x) = \{y \in \mathbb{X} : d(y, x) < r\} \text{ in } (\mathbb{R}^{n}, \text{standard})
$$
\n
$$
\mathfrak{D}E_{\gamma}(x) = S_{\gamma}(x) = \{y \in \mathbb{X} : d(y, x) = r\} \in \mathbb{R}
$$
\n
$$
\overline{B}_{\gamma}(x) = B_{\gamma}(x) \cup \mathfrak{D}E_{\gamma}(x) = \{y \in \mathbb{X} : d(y, x) \le r\}
$$
\n
$$
\text{Further Moles} \quad \text{if } \gamma \in \mathbb{R} \text{ such that } \mathbb{R} \in \mathbb{
$$

 Pf of (iii) : Only need to show that ∂E CE if E is losed. Let $x \in \partial E$, then by definition $B_{\mu}(x) \wedge E \neq \phi \quad (\lambda \quad B_{\mu}(x) \wedge (\overline{x} \wedge \overline{E}) \neq \phi)$ \Rightarrow I $x_{0} \in B_{\frac{1}{a}}(x) \cap E$. $\Rightarrow d(x_1, x) < \frac{1}{n}, \forall n$ \therefore Xn \Rightarrow X Since E is closed, Prop $2.7 \Rightarrow x \in E$. Since $x \in \partial E$ is arbitrary, $\partial E \subset E$. Prop 2.9 Let $E \subset (\mathbb{Z}, d)$. Then $(a) \quad x \in \overline{E} \iff B_r(x) \cap E \neq \emptyset$, $\forall r > 0$. (b) $A \subset B \Rightarrow \overline{A} \subset \overline{B}$ $\forall A, B \subset (\overline{X}, d)$ $(c) \equiv \dot{\bullet}$ closed (d) $\overline{E} = \cap \{C : C = closed \text{ set } C \subset C$ ie E is the smallest closed set containing E

 $\underline{P}(\alpha) \Longleftrightarrow$

 $X\in \overline{E} \implies X\in E$ or $X\in \partial E$. If XEE, then XE By(X) NE, VIYO $\Rightarrow B_{r}(x)$ \cap \neq ϕ , \forall r > 0. If $x\in\partial E$, then by definition of boundary point, V open set G containing x , $G \cap E \neq \phi$ (& G) $E \neq \phi$) Suice $B_{r}(x)$ is open and $XCB_{r}(x)$, $yr>0$, we have $B_r(x)$ $nE \neq \emptyset$, $\forall r > 0$.

 $\left(\rightleftharpoons\right)$ If XEE, we are done. (XEECE) If X&E, then for any open set G antaining x, $x \in G \setminus G$.

Heme $G \setminus E \neq \phi$.

To show that $G \cap E \neq \emptyset$, we choose $r_0 > 0$ s.t. Br. (2) c G (2) is possible suite G is open) Then by assumption, $B_{r2}^{\prime}(x)$ $\cap E \neq \emptyset$ and there $G \cap E$ $(3 Br_0(x) \cap E) \neq \emptyset$.

(b) Let
$$
x \in \overline{A}
$$
.
\nBy part(a), $B_r(x) \cap A \neq \emptyset$, $\forall r>0$
\n $5x \cdot e$ $A \subseteq B$, $B_r(x) \cap B \neq \emptyset$, $\forall r>0$
\n $8x \cdot e$ $A \subseteq B$.
\n $\therefore \overline{A} \subseteq \overline{B}$. $\&$
\n $\therefore \overline{A} \subseteq \overline{B}$. $\&$
\n(C) Consider a $sg_1 \{x_n\} \in \overline{E}$ such that $x_n \to x$
\n $5x \cdot sme \times e \times \cdot W_e$ need to show that $xe \overline{e}$. (ng_1x)
\n $Suppose not, then $x \notin \overline{E}$.
\n $8ar(0) \Rightarrow \exists e_0>0$ such that
\n $x_0 \in B_e(x)$ $\forall n>10$.
\nThen $B_{\varepsilon_0}(x) \cap \overline{e} = \emptyset \Rightarrow x_n \in \partial \overline{e} \setminus \overline{E}$ for $n>n_0$.
\n $\forall n \in \partial \overline{X}$, $\forall n > 0$.
\n $\forall n \in \partial \overline{X}$. $\forall n > 0$
\n $\forall n \in \partial \overline{X}$. $\forall n \in \partial \overline{E} \subseteq \overline{E}$
\n $\forall n \in \partial \overline{X}$. $\forall n \in \partial \overline{E} \subseteq \overline{E}$
\n $\forall n \in \partial \overline{X}$. $\forall n \in \partial \overline{E} \subseteq \overline{E}$
\n $\forall n \in \partial \overline{X}$. $\forall n \in \partial \overline{E} \subseteq \overline{E}$
\n $\forall n \in \partial \overline{X}$. $\forall n \in \partial \overline{E} \subseteq \overline{E}$
\n $\forall n \in \partial \overline{X}$. $\forall n \in \partial \overline{E} \subseteq \overline{E}$
\n $\forall n \$$

 \overline{C}

 (d) By (c) , \overline{E} is closed x \overline{E} $>$ E $i. \quad \overline{E} \in \{C:C=cl$ osed set, $C^{\supset E}$ \Rightarrow \overline{E} \supset \cap $\{C : C = closed \text{ set }$, $C \supset E$ } $Conversely$, let C be a closed set & CDE . Then by (b) and (iii) of FurtherNotes above, $\overline{E} \subset \overline{C} = C$ $\Rightarrow E C \cap \{C: C = closed set, C \geq \sum_{x}$