Eg: let
$$
(X,d)
$$
 be a node $\sec \sec \theta$, $A \in X$, $A \neq \emptyset$
\n
$$
2 \Rightarrow R \Rightarrow y
$$
\n
$$
d(x,A) = \frac{\sin f}{\sin f} d(x,y)
$$
\n
$$
(d\sin \sec \theta + y)
$$
\n
$$
(d\sin \tan \theta + x) \cdot (\cos A)
$$
\n
$$
(d\sin \tan \theta + x) \cdot (\cos A)
$$
\n
$$
d(\sin \theta + y)
$$
\n
$$
d(\cos A) = d(x,y)
$$
\n
$$
d(x,y) = \sec \tan A
$$
\n
$$
d(x,y)
$$
\

Note: By claim,
$$
d(x_n, x) \Rightarrow 0 \Rightarrow d(x_n, A) \Rightarrow d(x, A)
$$

\n $\therefore d(x, A) = (x, A) \Rightarrow R$ is the (a.e. 5 function of x)

\n $(\text{In fact, } d(x, A) \text{ is "Lipschitz continuous}'')$

This example shows that there are "many" its functions on a metric space.

Notation = Unually, we use the following notatra.
\n
$$
-\mu
$$
 subsets $A \times B \subset \mathbb{X}$
\n $d(x, A) = \lim_{x \to 0} \{d(x, y) : y \in A\}$
\n $d(A, B) = \lim_{x \to 0} \{d(x, y) : x \in A, y \in B\}$

2.3 Open and Closed Sets

20.1	let	lX,d	webits space
• A set $G \subset X$ is called an <u>open set</u> $\dot{\mathcal{U}}$			
$\forall x \in G, \, \dot{\mathcal{I}} \in \mathcal{S} \cup \text{ s.t. } B_{\mathcal{E}}(x) = \{\mathcal{Y} : d(\mathcal{Y}, x) < \mathcal{E} \} \subset G$			
(The number $\mathcal{E} \geq 0$ may vary depending on x)			
• We also define the <u>output set</u> \emptyset $\dot{\mathcal{A}}$ be an <u>open set</u>			
• $\begin{array}{ccc}\n & & \\ &$			

(b) Arbitrary union of open sets
$$
\tilde{\omega}
$$
 open z 11, G_{α} , $\alpha \in \mathcal{A}$,
 $\tilde{\omega}$ a collection of open sets, then $\bigcup_{\alpha \in \mathcal{A}} G_{\alpha}$ $\tilde{\omega}$ an open set.

(c) Füste ütersettan of spensets õ opu. # Gy"; Gv are open sets.
Heur
$$
\bigcap_{3=1}^{\infty} G_3
$$
 õs an open set.

Pf: (a) Clear (b) let $x \in \bigcup_{\alpha \in A} G_{\alpha}$ => XEGN farsamed ESA

$$
\Rightarrow
$$
 3600 s.t. $B_{\xi}(x) \subset G_{\alpha}$ (Sàcç Gα 9724)
 \Rightarrow 85(x) $\subset \bigcup_{\alpha \in A} G_{\alpha}$

$$
\begin{array}{lcl}\n\text{(c)} & \text{let} & \text{X} \in \bigwedge_{3=1}^{N} G_j \implies \text{X} \in G_j \text{, } \forall j=1, \because N \\
& \Rightarrow \exists \xi_j > 0 \text{ s.t. } B_{\xi_j}(X) \subset G_j \text{, } \forall j=1, \because N.\n\end{array}
$$
\n
$$
\begin{array}{lcl}\n\text{let} & \text{E} = \text{min} \left\{ \varepsilon_1, \because_j \xi_N \right\} > 0 \text{ . Then} \\
& B_{\xi}(X) \subset B_{\xi_j}(X) \subset G_j \text{, } \forall j=1, \because N \\
\Rightarrow & B_{\xi}(X) \subset B_{\xi_j}(X) \subset G_j \text{ . } \forall j=1, \because N\n\end{array}
$$

Def: let
$$
(X,d)
$$
 be a metric space.

\nA set $F \subset X$ is called a closed set at the
\n*complement* $X \setminus F$ is an open set.

Prop 2.5: Let (X,d) be a metric space. We have
(a) X and \emptyset are closed sets.
(b) Arbitrary integration of closed sets \tilde{a} closed : 4 \tilde{F} and \tilde{F} and \tilde{F} .
\tilde{b} a collection of closed sets, then $\mathbb{Q}_{\epsilon,A} \vdash_{\alpha} \tilde{a}$ closed set.
(c) Find the union of closed sets \tilde{a} closed: \tilde{F} is a closed set.
then $\mathbb{Q}_{\tilde{f}} \vdash_{\tilde{a}} \tilde{b}$ a closed set.

Note: Prop 2.4 2 2.5 \Rightarrow \leq \approx ϕ are both open \approx closed.

QQ2.10	(1) Every metric ball
$B_r(x) = \{y \in X : d(x,y) < r\}$ (r>0)	
\therefore <math< td=""></math<>	

(2) The set
$$
E = \{y \in X : d(y,x) > r\}
$$
 ($\{a \text{ fixed } x \in X\}$
\n \bar{b} open and flow
\n $\overline{X} \setminus E = \{y \in X : d(y,x) \le r\}$ is closed.
\n $\overline{B} \setminus \overline{C} = \{d(x,y) - r > 0$
\n $\overline{C} \setminus E = d(x,y) - r > 0$
\n $\overline{C} \setminus E = d(x,y) - \overline{C} \setminus \overline{C}$
\n $\overline{C} \setminus E = d(x,y) - \overline{C} \setminus \overline{C}$
\n $\overline{C} \setminus E = d(x,y) - \overline{C} \setminus \overline{C}$
\n $\overline{C} \setminus E = \overline{C} \setminus \overline{$

Note: We woually write $\overline{\mathcal{B}_\Gamma}(x) = \overline{\mathcal{B}_\Gamma(x)} = \{y \in \mathbb{X} : d(y,x) \leq r\}$ the closed ball of radius r centered at x .

Confusing notationhere maynotequal to the closure of Brix in a general metricspace

(3) Since Br(X) & E = {ye X = d(x,y) >r} are open
\nBr(x)
$$
U \in \tilde{\omega}
$$
 open
\n \Rightarrow $X \setminus (B_r(x)U \in) = {yeX \cdot d(x,y) = r} \hat{\omega}$ closed.
\nIn particular, E=1yeX = d(x,y) >o} is open (take r = o)
\n \Rightarrow } \times 5 = X \in \tilde{\omega} closed. (in any matrix space)
\n(Note = {x} may not be open (unless #6=0 s4. B₆(x)=1x5)
\n*Qaz11* $B_{\frac{1}{n}}(x)$, $n=1,2,...$ or *open sets*
\n*Qaim* $\bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(x) = 3x$ (closed, may not be open)

(this shows countable infurite intersection of open sets may not be open)

$$
\begin{array}{lcl}\n\text{Pf of } \text{du}\n\\ \text{Pf of } \text
$$

$$
Qg2.13 \times Z = C[a,b]
$$
 with $d_{\infty}(f.g) = 115 - 911_{\infty} = \frac{24}{x+4}$

$$
E = \{ f \in C[a,b]: \ \text{for } s > 0 \text{ and } s \in B \} \subset \mathbb{X}
$$

V fEE, f is positive, itm the closed a bounded
irtanal [9,6] , therefore
$$
\exists
$$
 m > 0 s+.

$$
\mathcal{F}(x) \geq m > 0, \qquad \forall x \in [a, b].
$$

Consider

\n
$$
B_{\frac{m}{2}}(f) = \{ g \in C[a,b]: d_{\infty}(g,f) < \frac{m}{2} \}
$$
\nThen

$$
49 \text{ g} \div \frac{1}{2} (5), \text{ we have } 4 \times \text{e} [0, 5].
$$

\n
$$
9(x) = [9(x) - f(x)] + f(x)
$$

\n
$$
3 (x) = 9(x) - \frac{10}{2} \times 10 = 10
$$

\n
$$
3 (x) - \frac{10}{2} \times 10 = 10
$$

\n
$$
3 (x) - \frac{10}{2} \times 10 = 10
$$

\n
$$
3 (x) - \frac{10}{2} \times 10 = 10
$$

\n
$$
3 (x) - \frac{10}{2} \times 10 = 10
$$

\n
$$
3 (x) - \frac{10}{2} \times 10 = 10
$$

$$
\therefore \quad \text{GE } E \quad \text{A } \quad \text{Bow} \quad \text{Bow}^{\text{ba}}(f) \subset E
$$
\n
$$
\therefore \quad E \text{ is open in } (C[a,b], da)
$$
\n
$$
\left(a \text{A } \forall f \in E, \quad \exists B^{\text{ba}}_{\text{a}}(f) \subset E \quad \right)
$$

Similarly, me can show that \forall dER $\{f\in C[a,b]: f(x)>d, \forall x\in [a,b]\}$

 $\{\negthinspace + \negthinspace \in \negthinspace C[\![a,b]\!] : \{\negthinspace \{x\}\negthinspace < \negthinspace \alpha\} \wedge \forall x \negthinspace \in \negthinspace {\sf Eq,} \negthinspace \beta\}$

are open in (C[a,b], dos).

 $\{f \in C[a,b] : f(x) \ge d, \forall x \in [a,b]\}$ And $\{f \in C[\alpha, b] : f(x) \le d, \forall x \in [a, b] \}$ are closed in (C[a,b], doo) (Ex!)

 $\begin{pmatrix}$ Caution: $Cl(a,b] \setminus \{eCl(a,b] : \{(x)\geq \alpha, \forall x \in [a,b]\} \ \pm \{f \in Cl(a,b] : \{(x)\leq \alpha, \forall x \in Ca, b\} \} \end{pmatrix}$

 $eq2.14$: Let $\overline{X} \neq \varphi$ and $d = \text{double metric on } \overline{X}$. Then Y subset $E \subset X$, $B_{\frac{1}{2}}(x)$ = $\{x\}$ C E , $\forall x \in E$, \therefore E is open. Therefore , any subset $\epsilon \in \partial f$ (\mathbb{Z} , disnote) is open, ϵ from α any subset ϵ of $(\epsilon \leq \epsilon)$ disnete) is closed. Together, any subset E of (Z) disnete) is both open and closed. Ig particular, any $\{x\} \subset (\mathbb{X}, \text{ discrete})$ is both open and closed. Prop 2.6 Let $(\mathcal{Z},\mathcal{A})$ be a netwo space.

A sequence $\{x_n\}$ curverges to x if and only if

 \forall open set G cartaining x \exists n_o such that

 $X_n \in G$, \forall $n \geq n$.

$P_{\perp}^{L}: (\Rightarrow)$	let G open 2 x ∈ G
\Rightarrow \exists £50 s ^t . B_{ϵ} (x) $\in G$	
As $x_{n} \Rightarrow x_{n}$ for this ϵ > 0, \exists to s_{n} .	
$d(x_{n}, x) < \epsilon$, \forall $n \ge n_{o}$	
\Rightarrow $x_{n} \in B_{\epsilon}$ (x) $\subset G$, \forall $n \ge n_{o}$	
(\Leftarrow) \forall £50 , B_{ϵ} (x) is an open set containing x.	
\Rightarrow $d(x_{n}, x) < \epsilon$, \forall $n \ge n_{o}$	
\Rightarrow $d(x_{n}, x) < \epsilon$, \forall $n \ge n_{o}$	
\Rightarrow $d(x_{n}, x) < \epsilon$, \forall $n \ge n_{o}$	
\Rightarrow $d(x_{n}, x) < \epsilon$, \forall $n \ge n_{o}$	
\Rightarrow $d(x_{n}, x) < \epsilon$, \forall $n \ge n_{o}$	
\Rightarrow $d(x_{n}, x) < \epsilon$, \forall $n \ge n_{o}$	
\Rightarrow $d(x_{n}, x) < \epsilon$, and ϵ	
\Rightarrow $d(x_{n}, x) < \epsilon$, and ϵ	
\Rightarrow $d(x_{n}, x) < \epsilon$, and ϵ	

$$
\overline{\lim}\rho\vert_{\partial S} \text{ that } x \in A.
$$

 $\exists f: (\Rightarrow)$ Suppose not. Then $x \notin A$

 $\lambda e. \times \in \mathbb{Z} \backslash A$ which is open (as A closed) \Rightarrow = E=0, β_{s} (A) C X \ A.

On the other each $X_n \rightarrow X$, \Rightarrow \exists no s.t. $d(x_n, x) < \epsilon$ \forall n>no \Rightarrow $x_0 \in B_{\epsilon}(x) \subseteq X \setminus A$ (by above) \Rightarrow $\forall n \notin A$ contradiction $\frac{1}{x}$ (\Leftarrow) Suppone not. Then A is not closed. \Leftrightarrow $X \setminus A$ is not open $\exists x \in X \land A \leq f$. BECX) $\notin X \land A$, $\forall \varepsilon > 0$. In particular, $B_{n}(x) \cap A \neq \varphi$, $\forall n=1,2,...$ Pick Xa E B1 (X) NA fa each n Then $\{x_{a}\}cA$ & $d(x_{a},x)<\frac{1}{n}, \forall n$ \Rightarrow \times _n \Rightarrow \times as n \Rightarrow ∞ . Contradicting the assumption (as $x \in \mathbb{X} \backslash A$) $\overline{\mathbb{X}}$

Prop 2.8 left $f: (\mathbb{X}, d) \rightarrow (\mathbb{Y}, \rho)$ be a mapping between
value spaces ,
(a) f is continuous at x
\Leftrightarrow \forall open set G (in \mathbb{Y}) containing $f(x)$,
$f'(G)$ contains $B_{\xi}(x)$ for some $\xi > 0$.
(b) f is continuous in \mathbb{X}
\Leftrightarrow \forall open set G in \mathbb{Y} , $f'(G) \geq \text{open in } \mathbb{X}$

$$
Pf: (a) (\Rightarrow) \text{ Supreme not},
$$
\n
$$
Hau \equiv open \text{ set } G \text{ in } T \text{ containing } 5k
$$
\n
$$
s.f. \quad f'(G) \text{ doesn't containing } B_{e}(x), \quad V \in I_{0},
$$
\n
$$
i.e. \quad B_{e}(x) \cap [X \setminus f'(G)] \neq \phi, \quad V \in I_{0},
$$
\n
$$
I_{n} \text{ particular } B_{i}(x) \cap [X \setminus f'(G)] \neq \phi, \quad Vn.
$$
\n
$$
Pick \times_{n} \in B_{i}(x) \cap [X \setminus f'(G)] \neq \phi, \quad Vn.
$$
\n
$$
Tlen \times_{n} \in B_{i}(x) \cap [X \setminus f'(G)] \neq \phi, \quad Vn.
$$
\n
$$
I \times_{n} \in B_{i}(x) \Rightarrow X_{n} \Rightarrow x \text{ as } n \Rightarrow \infty
$$
\n
$$
I \times_{n} \in X \setminus f(G) \Rightarrow f(X_{n}) \notin G, \quad Vn.
$$

 B_y F_{0p} 2.6, $S_{(x_9)}$ \rightarrow $S_{(x_9)}$. Contradicting the assumption that $f \circ d s$. at $x \cdot$ (\Leftarrow) \forall 2>0, $B_{\epsilon}(f(x)) \subset \uparrow$ is an open set containing $f(x)$. By assumption, $f^{-1}(B_{5}(f(x))) \supset B_{\delta}(x)$ for some δ so i.e $f(y) \in B_{\epsilon}(f(x))$, $\forall y \in B_{\delta}(x)$ $\Rightarrow d(f(y), f(x)) < 8$, $\forall d(y,x) < 8$. \therefore fact at x . (b) follows from (a) . (Ex!) Note: We also thave: $\iff \mathbb{X} \overset{\sim}{\rightsquigarrow} \mathbb{G} \overset{\sim}{\rightsquigarrow}$ Y closed set $F\subset Y$, $S(F)$ is closed in \overline{X} $(Pf : Ex')$

Eg: (i) let
$$
A \subset \mathbb{X}
$$
 a $A \neq \emptyset$.
\nSince $\int (x) = d(x, A) \ge d\theta$
\n $G_r = \{x \in \mathbb{X} : d(x, A) < r\} = f'(B_r(o)) \cap \mathbb{R}$
\n \therefore open in \mathbb{X} .

(i')
$$
Claim: I5 A(F\phi)
$$
 is closed,
\nHow $A = \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$. $(G_{\frac{1}{n}} = \{x \in X : d(xA) \le \frac{1}{n}\})$
\nHow $A = \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$. $(G_{\frac{1}{n}} = \{x \in X : d(xA) \le \frac{1}{n}\})$
\nHow $A = \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$, $(G_{\frac{1}{n}} = \{x \in X : d(xA) \le \frac{1}{n}\})$
\nby $x \in \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$, then $x \in G_{\frac{1}{n}}$, $y \in$
\n $\Rightarrow d(x, A) < \frac{1}{n} \Rightarrow y \in$
\n $\Rightarrow d(x, A) < \frac{1}{n} \Rightarrow y \in$
\n $\Rightarrow \exists x_{n} \in A \text{ s.t. } d(x, x_{n}) < \frac{1}{n}, y \in$
\nHence $\{x_{n}\} < A \text{ is closed}$ we have $x \in A$. $(P_{\text{top}} \times 1)$
\n $\Rightarrow A = \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$, \neq