Eq: let (X, d) be a notice space,
$$A \in X$$
, $A \neq \emptyset$,
Define $d(x,A) : X \to IR$ by

$$\frac{d(x,A) = \inf_{y \in A} d(x,y)}{(dividue from x to the subset A)}$$

$$\frac{(dividue from x to the subset A)}{(dividue from x to the subset A)}$$

$$\frac{(laim : | d(x,A) - d(y,A)| \le d(x,y), \quad \forall x,y \in X.}{By \ defin. \ of \ d(y,A),}$$

$$\forall z > 0, \quad \exists \ z \in A \ s.t. \ d(y,A) + z > d(z,y)$$

$$Howe, \quad d(x,A) \le d(z,x)$$

$$\leq d(x,y) + d(y,A) + z$$

$$\Rightarrow \quad d(x,A) - d(y,A) < d(x,y) + z$$

$$\Rightarrow \quad d(x,A) - d(y,A) < d(x,y) + z$$

$$Totorchanging the roles of x = y, we have$$

$$d(y,A) - d(y,A) < d(y,x) + z = d(x,y) + z$$

$$Theories (d(x,A) - d(y,A) = d(x,y) + z.$$

$$Source (z > y = abistroxy, \ (d(x,A) - d(y,A)] \le d(x,y).$$

This example shows that there are "many" its functions on a metric space.

Notation : Howally, we use the following notations
for subsets
$$A \in B \subset X$$

 $d(x, A) = \inf \{ d(x, y) : y \in A \}$
 $d(A, B) = \inf \{ d(x, y) : x \in A, y \in B \}$

\$2.3 Open and Closed Sets

Def: let (X,d)=metric space
• A set GC X is called an open set if

$$\forall x \in G, \exists \underline{e} > 0$$
 set. $\mathcal{B}_{\underline{e}}(x) = \{y: d(y, x) < \underline{e}\} \subset G$.
(The number $\underline{e} > 0$ may vary depending on X)
• We also define the empty set \not to be an open set.
 $f = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

(b) Arbitrary union of open sets is open = if
$$G_{\alpha}$$
, $\alpha \in \mathcal{A}$,
is a collection of open sets, then $\bigcup_{\alpha \in \mathcal{A}} G_{\alpha}$ is an open set.

(c) Finite intersection of opensets is open: If
$$G_1$$
; G_N are open sets,
then $\int_{-1}^{\infty} G_3$ is an open set.

Pf: (a) Clear (b) Let $x \in \mathcal{A} \in \mathcal{A}$ $\Rightarrow x \in \mathcal{G}_{\mathcal{A}}$ for some $x \in \mathcal{A}$

⇒ ∃E>0 S.J.
$$B_{E}(x) \subset G_{\alpha}$$
 (Since Gor open)
⇒ $B_{E}(x) \subset \bigcup_{\alpha \in \mathcal{A}} G_{\alpha}$

(c) Let
$$x \in \bigcap_{j=1}^{N} G_j \Rightarrow x \in G_j$$
, $\forall j = 1, ..., N$

$$\Rightarrow \exists \mathcal{E}_j > 0 \text{ s.t. } \mathcal{B}_{\mathcal{E}_j}(x) \subset G_j, \forall j = 1, ..., N.$$
Let $\mathcal{E} = \min\{\mathcal{E}_1, ..., \mathcal{E}_{NS} > 0$. Then
 $\mathcal{B}_{\mathcal{E}}(x) \subset \mathcal{B}_{\mathcal{E}_j}(x) \subset G_j, \forall j = 1, ..., N$

$$\Rightarrow \mathcal{B}_{\mathcal{E}}(x) \subset \mathcal{B}_{\mathcal{E}_j}(x) \subset G_j, \forall j = 1, ..., N$$

$$\underline{Def}$$
: let (X,d) be a metric space.
A set FCX is called a closed set if the complement X/F is an open set.

<u>Note</u>: Prop 2.4 \approx 2.5 \Rightarrow X \approx ϕ are both open \approx closed.

$$\underbrace{eq2.10}_{B_{r}(x) = iy \in X} = d(x,y) < r \ (r>0)$$
is an open set.

$$\underbrace{Ff: \forall y \in B_{r}(x)}_{X \text{ then } \mathcal{E}} \underbrace{ f: \neg d(x,y) > 0}_{X \forall Z \in B_{E}(y)}$$

$$d(z,x) \leq d(z,y) + d(y,x) < \varepsilon + d(y,x) = r$$

$$\Rightarrow B_{E}(y) \subset B_{r}(x)$$

(2) The set
$$E = \{y \in \mathbb{X} : d(y, x) > r\}$$
 (for a fixed $x \in \mathbb{X}$)
is open and theme
 $\mathbb{X} \setminus E = \{y \in \mathbb{X} : d(y, x) \leq r\}$ is closed.

Ef: $\forall y \in \mathbb{E}$
Then $\mathbb{E} \stackrel{\text{def}}{=} d(x, y) - r > 0$
 $\forall z \in B_{\mathbb{E}}(y)$
 $d(z, x) \geq d(x, y) - d(z, y) > d(x, y) - (d(x, y) - r) = r$
 $\therefore B_{\mathbb{E}}(y) \subset \mathbb{E}$

Note: We would write $\overline{B_r(x)} = \overline{B_r(x)} = \frac{1}{2} \sqrt{E_x} \cdot d(y,x) \leq r \leq \frac{1}{2}$ the closed ball of radius r centered at x,

(this shows countable infinite intersection of open sets may not be open)

$$Pf of Claim: \forall y \in \bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(x) \Rightarrow y \in B_{\frac{1}{n}}(x), \forall n = 1, 2, \cdots$$
$$\Rightarrow d(y, x) < \frac{1}{n}, \forall n$$
$$\Rightarrow d(y, x) = 0$$
$$\Rightarrow y = x$$

$$\underline{eg2.13}$$
 $X = CTa, \underline{bJ}$ with $d_{10}(\underline{f}, \underline{g}) = 1|\underline{f} - \underline{g}||_{\infty} = \sup_{x \in Ta, \underline{bJ}} \int_{x \in Ta, \underline{bJ}} \int_{x$

$$f(x) \ge m > 0$$
, $\forall x \in [a, b]$.

Causidor
$$B_{\frac{m}{2}}^{\infty}(f) = \{g \in C[a,b]: d_{\infty}(g,f) < \frac{m}{2}\}$$

Then

$$\forall g \in B_{\frac{m}{2}}^{\infty}(f), we have \forall x \in [a, b]$$

$$g(x) = [g(x) - f(x)] + f(x)$$

$$\geq f(x) - 11g - f ||_{\infty}$$

$$\geq f(x) - \frac{m}{2} \geq m - \frac{m}{2} = \frac{m}{2} > 0$$

$$m_{\xi} = \frac{1}{2} = \frac{1}{2} = 0$$

$$: GEE l flette $B_{\frac{m}{2}}^{\infty}(f) \subset E$

$$: E is open in (CEQ, b3, do)$$

$$\left(a_{x} \forall f \in E, \exists B_{\frac{m}{2}}^{\infty}(f) \subset E\right)$$$$

Similarly, one can show that YAER {fecta,b]: f(x)>d, YXETa,b]}

 $\{f \in C[a,b]: f(x) < d, \forall x \in [a,b] \}$

cere open in (C[a,b], dos).

And $\{f \in C[a,b] = f(x) \ge d, \forall x \in [a,b]\}$ $\{f \in C[a,b] = f(x) \le d, \forall x \in [a,b]\}$ are closed in (C[a,b], dw) (Ex!)

 $\left(\begin{array}{c} \text{Caution} : C[a,b] \setminus \{fe([a,b] : f(x) \ge \alpha, \forall x \in [a,b]\} \\ + \} fe([a,b] : f(x) < \alpha, \forall x \in [a,b]\} \end{array}\right)$

 $\underline{cq}^{2.14}$: Let $X \neq \emptyset$ and d = discrete metric on X.Then V subset ECZ, By(x)=1x5 CE, VXEE. : Eisopen, Therefore, any subset E of (X, disvote) is open, & home any subset E of (X, disnete) is closed. Together, any subset E of (X, disnete) is both open and closed. Ja particular, any ix's C (X, disaete) à both open and closed. Prop 2.6 Let (8, d) be a métric space.

A sequence this converges to x if and only if

V open set G containing x Ino such that

×n∈G, ∀n≥no.

Pf: (=>) Suppose not. Then X&A

Le. $x \in X \setminus A$ which is open (as A closed) ⇒ EE>O BGGNCXNA.

On the other nand $X_n \rightarrow X$, ⇒ ∃no s.t. d(xn,x)< & ∀n>no ⇒ Xn ∈ BE(X) ⊂ X \ A (Ly above) => Xn & A contradiction × (\Leftarrow) Suppose <u>not</u>. Then A is not closed. €) XIA à not open $\exists x \in X \land A$ s.t. $B_{\varepsilon}(x) \notin X \land A$, $\forall \varepsilon > 0$. In particular, $B_{\perp}(x) \cap A \neq \emptyset$, $\forall n = 1, 2, \dots$ Pick Xn E B1(X) A fa each n Then {xa > CA & d(xn,x) < 1, Va \Rightarrow $X_n \rightarrow X$ as $n \rightarrow \infty$ Contradicting the assumption (as XEXIA.) ×

$$Pf: (a) (\Rightarrow) Suppose not,$$

$$Han \exists open set G in T containing Sixs
s.t. f(G) doesn't containing B_{2}(x), \forall E>0.$$

i.e. $B_{E}(x) \cap [X \setminus f'(G)] \neq \phi, \quad \forall E>0.$
In ponticular $B_{L}(x) \cap [X \setminus f'(G)] \neq \phi, \quad \forall n.$
Pick $x_n \in B_{T}(x) \cap [X \setminus f'(G)], \quad \forall n.$
Then $x_n \in B_{T}(x) \cap [X \setminus f'(G)], \quad \forall n.$
Then $x_n \in B_{T}(x) \Rightarrow x_n \Rightarrow x eo n \Rightarrow oo$
 $\begin{cases} x_n \in X \setminus f'(G) \Rightarrow f(x_n) \notin G, \quad \forall n. \end{cases}$

By Prop2.6, S(Xn) +> f(X). Contradicting the assumption that fis at x. (€) 42>0, BE(f(x)) CF is an open set containing f(x). By assurption, $f'(B_{\varsigma}(f(x))) \supset B_{\varsigma}(x)$ for some $\delta > 0$ i.e $f(y) \in B_{\varepsilon}(f(x))$, $\forall y \in B_{\delta}(x)$ \Rightarrow d(f(y), f(x)) < E, \forall d(y,x) < δ . in findinat x, (b) follows from (Q). (Ex!) × Note: We also have: Sint it it it V closed set FCT, S(F) is closed in X (Pf: Ex!)

Eq: (i) Let
$$A \subset X \in A \neq \emptyset$$
.
Since $f(x) = d(x, A)$ is the
 $G_r = \{x \in X = d(x, A) < r\} = f'(B_r(o))$ in \mathbb{R}
is open in X .

(ii) Claim: If
$$A(\neq \phi)$$
 is closed,
Here $A = \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$. $(G_{\frac{1}{n}} = \frac{1}{2} \times EX : d(x, A) < \frac{1}{n} \le 1)$
Here any closed set is a contable interedian
of open sets.
Pf = It is clear that $A \subset \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$ as $A \subset G_{\frac{1}{n}}, \forall n$.
Let $X \in \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$, then $X \in G_{\frac{1}{n}}$, $\forall n$
 $\Rightarrow d(x, A) < \frac{1}{n}$. $\forall n$
Here $\frac{1}{2} \times n \le A$ is 4 , $d(x, x_n) < \frac{1}{n}$, $\forall n$
Here $\frac{1}{2} \times n \le A$ is 4 set. $x_n \rightarrow x$.
Since A is closed, we have $x \in A$. (Rop 27)
 $\therefore A = \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$.