\$2.2 Limits & Continuity

Def: A sequence
$$\{X_n\}$$
 in a metric space (X,d) is said to
be converge to $x \in X$ if
 $\lim_{n \to \infty} d(X_n, X) = 0$
In this case, we write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ in X .

egs (i) Convergence in (Rⁿ, dz) is the usual convergence in Adv. Calculus. (ii) Convergence in (CTQ,b], dx) is the <u>uniform</u> convergence of a sez. of functions in (CTQ,b]. (Ex!)

Def: let d and p be Z metrics defined on X.
(1) We call p is stronger than d or d is meaker than p,
if
$$\exists C > 0$$
 s.t.
 $d(x,y) \leq C p(x,y)$, $\forall x,y \in X$
(2) They are equivalent if p is stronger and meaker than d.
i.e. $\exists C_{1}, C_{2} > 0$ s.t.
 $d(x,y) \leq C_{2} d(x,y)$ $\forall x,y \in X$.
 $(\alpha C_{1} d(x,y) \leq C_{2} d(x,y)$ $\forall x,y \in X$.

$$\underbrace{e_{y}}_{d_{1}} On \mathbb{R}^{n}, \qquad d_{1}(x_{1}y_{1}) = \underbrace{\sum}_{i} |X_{i}-y_{i}|^{2} \\ d_{2}(x_{1}y_{i}) = (\underbrace{\sum}_{i} |X_{i}-y_{i}|^{2})^{1/2} \\ d_{\infty}(x_{1}y_{i}) = \max_{i} |X_{i}-y_{i}|^{2}$$

Check: (i)
$$d_2(x,y) \leq \operatorname{Jn} d_{\infty}(x,y) \leq \operatorname{Jn} d_2(x,y)$$
 (Ex!,)
(ii) $d_1(x,y) \leq \operatorname{n} d_{\infty}(x,y) \leq \operatorname{n} d_1(x,y)$

Therefore, d_1 , $d_2 \ge d_{\infty}$ are equivalent metrics on \mathbb{R}^n . (Note: the constants depend on the dimension n.)

eq
$$X = C[a,b]$$

$$d_1(f,g) = \int_a^b |f-g| \qquad (infinite dimit)$$

$$d_{\infty}(f,g) = \max_{[q,b]} |f-g|$$

Then clearly $d_1(f,g) \leq (b-a)d_0(f,g)$, $\forall f,g \in CEQ,bJ$ \therefore doo to stronger than d_1 . However, it is <u>impossible</u> to find C > 0 st. $d_0(f,g) \leq Cd_1(f,g)$, $\forall f,g \in CEQ,bJ$ \therefore $d_1 \approx d_{00}$ ore <u>not</u> equivalent.

Then
$$d_1(f_{n,0}) = \int_0^1 |f_n| = \frac{1}{2n} \rightarrow 0$$
 as $n \rightarrow \infty$
 $d_{\infty}(f_{n,0}) = \max_{[0,1]} |f_n(x)| = n \rightarrow \infty$ as $n \rightarrow \infty$
Suppose $\exists C > 0$ s.t. $d_{\infty}(f,g) \leq C d_1(f,g)$, $\forall f,g \in C[0,1]$
Then
 $n = d_{\infty}(f_{n,0}) \leq C d_1(f_{n,0}) = \sum_{n \in I}$, $\forall n$
which is a contradiction by letting $n \rightarrow \infty$.

Therefore d' & dos are not equivalent. X

Prop Z.Z let
$$f: (X,d) \rightarrow (\overline{Y},p)$$
 be a mapping between 2 metric
spaces, and $x_0 \in X$. Then
 f is cartinuous at x_0
 $\Leftrightarrow \{ \forall E > 0, \exists \delta > 0 \text{ such that}$
 $p(f(x), f(x_0)) < E, \forall x \text{ with } d(x,x_0) < \delta \}$

 $(Pf: E_{R}!)$

Prop 23: Let
$$f: (X,d) \rightarrow (\overline{r}, p)$$
 and
 $g: (\overline{r}, p) \rightarrow (\overline{z}, m)$
are mappings between metric spaces.
(a) If fis cartinuous at $x = g$ is cartinuous at $f(x)$,
then $g \cdot f: (\overline{X}, d) \rightarrow (\overline{z}, m)$ is cartinuous at x .
(b) If f is its in \overline{X} and g is its $\overline{n}, \overline{r}$, then
 $g \cdot f$ is its \overline{X} .

(Pf = Easy)