$$
\frac{Pf \text{ of } Thm1, lb}{Step 1 - VE>0, } \pm \alpha 2T-peniodic Lip & function g s.t. \quad (seting the function of the function of the function) = 0.5
$$

$$
\frac{pf}{f}: By Lemma 1.3 (and its proof), \forall \epsilon_1 > 0
$$

$$
\exists \text{ step function}
$$

$$
S(x) = \sum_{j=0}^{N-1} m_j \times_{\tau_j}(x)
$$

where
$$
u_j = \overline{u} + \overline{y} = \overline{x} = [a_j, a_{j+1}]
$$

\n
$$
\begin{cases}\nT_j = (a_j, a_{j+1}] \quad \text{for } j = j,..,n-1 \\
T_0 = \overline{u}a_0, a_1] \\
T_0 = \overline{u}a_0, a_
$$

Since f is Riemann untegrable, f is bounded. ie. $\exists M > 0$ s.t. $-M \le f \le M$. This implies $-M \leqslant M_{\hat{J}} \leqslant M$ and head $-M \leq S \leq M$. Note that $f \geq s$, we then have $0 \leq f - s \leq M$.

$$
\Rightarrow \quad \int_{-\pi}^{\pi} (f-s)^{2} \leq M \int_{-\pi}^{\pi} f-s \leq M \epsilon,
$$

Then choose $\delta > 0$ such $\delta < a_{j+1} - a_{j}$, $j = 1, 2, \dots N-1$ and défine a pieceurise linear cartinums function by $g(x) = \begin{cases} \frac{m_5 - m_{5^{-1}}}{\delta} (x - a_5) + m_{3^{-1}} , & \text{for } x \in (a_5, a_5 + \delta), \ \text{where} \end{cases}$
s(x)

$$
\int_{-\pi}^{\pi} (S - 9)^{2} = \sum_{j=1}^{N-1} \int_{a_{j}^{-}}^{a_{j} + \delta} \left(s(x) - \frac{m_{j} - m_{j-1}}{\delta} (x - a_{j}) - m_{j-1} \right)^{2}
$$

$$
= \sum_{j=1}^{N-1} \int_{\alpha_j}^{\alpha_j + \delta} \left(m_j - \frac{m_j - m_{j-1}}{\delta} \left(x - \alpha_j \right) - m_{j-1} \right)^2
$$

$$
= \sum_{\tilde{J}=1}^{N-1} (M_{\tilde{J}} - M_{\tilde{J}-1})^2 \int_{a_{\tilde{J}}}^{a_{\tilde{J}}+\delta} (1 - \frac{X-a_{\tilde{J}}}{\delta})^2
$$

$$
= \sum_{j=1}^{N-1} (M_j - M_{j-1}^2) \int_{q_j}^{2} \left(\frac{\delta + q_j - x}{\delta}\right)^2
$$

^I ⁸ It Mj Mj it ^s MV 1 8 Therefore I ^f ^g ^f ^s ^s ⁹¹⁵ ^E 21 ^f ^s ^S ^g ^C 2 ME 2MEN 1 8 Now fa any ^E so we first choose ^E Then find the step as described with ^N ay accordingly Finally choose

$$
\delta = \min \left\{ \frac{\varepsilon^2}{4 M^2 (N-1)}, \alpha_{\hat{J}+1} - a_{\hat{J}} \right\}_{\hat{J} = J, \dots, N}
$$

 $\overline{\mathsf{X}}$

we conclude, the Lip. function 9 satisfies $\int_{\pi}^{\pi} (\xi - g)^2 < \frac{\xi^2}{2} + \frac{\xi^2}{2} = \xi^2$

 $115 - 9112 < \epsilon$ \Rightarrow

In fact, our proof shows that if $S(x)$ is a step function on $[a,b]$ then \forall E>O, \exists Lipfunction β CX) s.t. $||S-g||_{\infty}$ <

Step 2	Ampletian of the proof.	
Apply 2	Luun 1.7	to the function 9 in Step 1.
$\exists N > 0$	\leq	$ g - S_N g _{\infty} < \frac{\varepsilon}{2\sqrt{2\pi}}$
(Not the N in step 1)		
Thus	$ g - S_N g _{z} = \left[\int_{-\pi}^{\pi} (g - S_N g)^{2} \int_{-\infty}^{1/2} \left\{ 2\pi g - S_N g _{\infty}^{2} \right\}^{2} \right]$	
\leq	$\frac{\varepsilon}{2}$	

By Cor1.15,
\n
$$
||f - 5y + ||_2 \le ||f - 5y + 1||_2
$$

\n $\le ||f - 5||_2 + ||g - 5y + 1||_2$
\n $\le ||f - 5||_2 + ||g - 5y + 1||_2$
\n $\le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$
\n $\le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$
\nStep 1.

Finally,
$$
Y n \ge N
$$
, Y of Y of Y , Y is the Y of Y .

\nThus, $Y n \ge N$, $||f - S_n f||_2 \le ||f - S_n f||_2 \le \varepsilon$

\nThus, $Y n \ge N$, $||f - S_n f||_2 \le ||f - S_n f||_2 \le \varepsilon$

\nUsing $||S_n S - S||_2 = O$ and Y is the ε .

\nUsing $||S_n S - S||_2 = O$ and ε .

Cor lilt ^a supposethat f f are 27periodic integrable functions on ETIT withthe same Fourier Series Then fifa almosteverywhere ie Fifa except ^a set of measurezero ^b Suppose that f ^e f are ²⁹ periodic continuous functions with the same Fourier series Then Fitz

Recall: A set E is said to be of measure zero if $H E > 0$, I countably many intervals $H E_{kj}$ s.t. $E \subseteq \bigcup_{k} \mathbb{I}_{k}$ $k \geq |\mathbb{I}_{k}| \leq \epsilon$.

 $Pf = (a)$ let $f = f_1 - f_2$, then $a_n(f) = b_n(f) = 0$ $\forall n \ge 0$ \Rightarrow $S_n f = 0$, $\forall a \ge 0$ Hence $(Thm1.16)$ line $\left\|S_{n}f-f\right\|_{2} = 0$ => $\left\|f\right\|_{2} = 0$ By theory of Riemann integral, $5=0$ almost everywhere. (b) We still have $||f||_2 = 0$. As f_1, f_2 $dt \Rightarrow f^2 dt \Rightarrow 0$ \Rightarrow $S^2=0.$ $\cancel{\times}$

Cor I. (Parsenval's Identity)
\nFor every
$$
2\pi
$$
-periodic function f artegrable on FT, π]
\n
$$
\boxed{||f||_2^2 = 2\pi a_0^2 + \pi \sum_{n=1}^{\infty} (a_n^2 + b_n^2)}
$$
\nwhere a_0, a_1, b_1 are Fourier coefficients of f .

$$
\frac{pf_{2}}{f_{2}} = \frac{B_{y}}{d\theta} \frac{d\theta}{d\theta} \frac{f_{01}}{d\theta} \frac{bn}{d\theta} = 5\frac{1}{\sqrt{\pi}}\frac{1}{2\pi}z
$$

 $\sqrt{\frac{1}{2\pi}} a_{0} = 5\frac{1}{\sqrt{\pi}} \frac{1}{2\pi}x$
 $n \ge 0$

Then $\langle f, \frac{1}{2}x f \rangle_{2} = \langle (f - \frac{1}{2}x f) + \frac{1}{2}x f, \frac{1}{2}x f \rangle_{2}$

By for 1/5,
\n
$$
S_{N}f = P_{N}f \text{ on } EN
$$
\n
$$
\therefore f - S_{N}f \text{ orthogonal to the subspace } EN \text{ (Ex.)}
$$
\n
$$
\therefore S_{N}f - S_{N}f \text{ and } S_{N}f \text{ is } S_{N}f \text{ is
$$

Then
$$
\begin{array}{lll}\n\mathcal{I} & \mathcal{I} & \mathcal{I} & \mathcal{I} & \mathcal{I} \\
\mathcal{I} & \mathcal{I} & \
$$

$$
\therefore \qquad \|\xi\|_{2}^{2} = \lim_{N \to \infty} \|\xi_{N}f\|_{2}^{2} = \lim_{N \to \infty} \left[2\pi \int_{0}^{2} f \pi \sum_{k=1}^{N} (a_{k}^{2} + b_{k}^{2}) \right]
$$

$$
\begin{array}{lll}\n\hline\neg \negthinspace \mathit{Equier series} & \circ f_{\mathit{r}}(x) = x & \text{in } \mathbb{FT} \mathbb{T} \\
\hline\n\mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} \\
& \mathit{Equation:} & \mathit{Equation:} & \mathit{Equation:} &
$$

Hence Parsenal's Identity $\Rightarrow \qquad \int_{-\pi}^{\pi} x^2 dx = \pi \sum_{n=1}^{\infty} \left[(-1)^{n+1} \frac{2}{n} \right]^2$ $\begin{array}{c}\left(\begin{matrix}Ex^{1}\\ \hline \end{matrix}\right)\\ \begin{matrix}\hline \end{matrix}\end{array}$ $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (Euler Famula)

0h2 MetricSpace In this chapter I always denotes a non empty set

Q5	3	width
$d = X \times X \Rightarrow [0, +\infty)$	such that	
$\forall x, y, z \in X$	the quality holds $\Leftrightarrow x = y''$.	
$(M1)$	$d(x, y) \ge 0$	$e^{-u} \cdot e^{-u} \cdot e$

Note Condition M3 is called the triangle atequality

$$
Qq. z.l
$$
 ($X = IR$, $d(x,y) = |x-y|$) \dot{w} a matrix space.

 eg 2.2 Let $X = \mathbb{R}^n$, $d_z(x,y) = \sqrt{\sum_{\lambda=1}^n (x_i - y_i)^2}$ (Euclidean wethic) f_u $X = (x_1, x_n)$ $x_1 = (y_1, y_n) \in \mathbb{R}^N$. Then (R_9^6, dz) is a metric space. (Proof omitted, $\tilde{\epsilon}_8$!)

$$
\frac{ag. 2.3}{\int} \quad \text{let} \quad \overline{X} = IR^n, \quad \text{defines}
$$
\n
$$
\int \quad d_1(x, y) = \frac{m}{2} |x - y_2|
$$
\n
$$
\int \quad d_0(x, y) = \lim_{\delta = 1, \ldots, n} |x - y_1|
$$

Then $\mathbb{R}^n, d_1 > 1$ $(\mathbb{R}^n, d_{\infty})$ are metric spaces.

Genualization of eqs 2.2 2.3 to function spaces:
\neq 2.4 lat C[0, b] = { rad} (rad) continuous functions on [0, b] {
\n
$$
\forall
$$
 5, g \in (20, b], define
\n $d_{\infty}(f, g) = 115 - g 11_{\infty} = max { |f(x) - g(x)| : x \in [0, b] }$
\nThen (Cl(a, b], do) to a metric space (Ex!)
\n \Rightarrow If -g 11_{\infty}
\n \Rightarrow [15 -g 11_{\infty}
\n9 (largest gaps between graphs
\n0) 6
\n15 -811_{\infty}
\n15 -811_{\infty}
\n15 -811_{\infty}
\n16 -116
\n17 -116
\n18 -211_{\infty}
\n19 -311_{\infty}
\n10 -116
\n11 5 -811_{\infty}
\n11 5 -811_{\in}

$$
\begin{array}{ll}\n\text{Similarly, } mc \text{ can } \text{define} \\
 d_1(f, g) &= \int_{a}^{b} |f(x) - g(x)| \, dx\n\end{array}
$$

It is also easy to verify that $(C[a,b],d_1)$ is a metric space. $(E_x!)$

The natural generalization of the Euclidean metric to
$$
CB, bJ
$$
 is
\n $d_2(f, g) = \int \frac{b}{a} |f - g|^2$

Note that $d_2(f,q)=\|\xi-g\|_2$ (as in Fourier senies) $(M1)$ e (M2) are clear for dz (because 5, g dz). An Cauchy-Schwarz \Rightarrow $11f+q11_{2}$ $f1f1_{2}+11g11_{2}$ $(f2x!)$

dz satisfies M3

Cegb dz is ^a metric space

Note: We are restricted to the space C[a,b] of continuous functions, not the bigger space RIa,bJ of Riemann intograble functions.

$$
\underline{dg} \underline{c} \underline{f} \quad \text{On} \quad \underline{X} = R[\underline{a}, \underline{b}] = \{ \text{Riemann intografik} \} \underline{d}
$$
\n
$$
\underline{d}_1 \quad \text{in} \quad \text{still} \quad \underline{d}_1(\underline{f}, \underline{g}) = \int_{a}^{b} |f - \underline{g}|
$$

However,
$$
(M1)
$$
 is not satisfied?
\n $d_1(f,g)=0 \Leftrightarrow f=g$ almost weynder
\n $\Rightarrow f=g$ (at every point)

 i d, is not a metric on R[a, b].

To overcome this, we consider
$$
X = \frac{R[a,b]}{A}
$$

where " \sim " is an equivalent relation on $RRa, b]$
defined by $f \sim g \Leftrightarrow f = g$ almost everywhere.
(Check: " \sim " is an equivalent relation.)
Then elements of $RLa, bJ \sim$ can be represented as ($f \in RRa, bJ$)
Let J or $\overline{f} = \{g \in RRa, bJ : g = f$ almost everywhere.
Now define \overline{d}_1 on $RLa, bJ \sim$ by $\overline{d}_1(\overline{f}, \overline{g}) = d_1(f, g)$

Check:	\n d_i \n $\dot{\omega}$ \n
\n $\dot{\omega}$ \n	
\n $d_i(f_i, g_i) = \int_a^b f_i - g_i $ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n $\dot{\omega}$ \n	
\n<	

Surilarly $d_1(f,g) \leq d_1(f,g_1)$ $d_i(f, g) = d_i(f, g_i)$.

Then it is straight forward to verify that $(R[a,b], \widetilde{d}_n)$ is a metric space.

 $Similarly$ fu $\left(\frac{R[a,b]}{2},\frac{a}{d}\right)$ is a metric space a note that \widetilde{dz} is the L^2 -distance defined before: $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$

$$
\widetilde{\mathcal{A}}_{2}(\overline{\mathcal{F}}, \overline{g}) = \left(\int_{a}^{b} |f - g|^{2}\right)^{2}
$$

Def	A	num	1	1	io a function	a	real vector space	X
to	0,00	sk. W x,y \in X	u (R)					
(N1)	$ x \ge 0$	g. "((x =0 \iff x=0".						
(N2)	$ dx = x $							
(N3)	$ x+y \le x $							
(N3)	$ x+y \le x + y $							
The pair	(X, \cdot)	u could be a named space.						
And	$d(X, y)$	$\frac{def}{dx}$	$ X - y $	u could be added the <u>underic induced</u> by the <u>norm</u>	$ \cdot $			

$$
f(x \cdot Shn \cdot fhat d(x,y) = ||x-y|| \geq \alpha \text{ with the property}
$$
\n
$$
d(dx, dy) = |x| d(x,y) > f \alpha \in \mathbb{R}
$$

$$
eqs: (a) \parallel x \parallel_{z} = (\sum x_{i}^{z})^{1/2}
$$
\n
$$
||x||_{x} = \sum |x_{i}|
$$
\n
$$
||x||_{\infty} = max \{ |x_{i}|, \dots, |x_{n}| \}
$$
\n
$$
||\xi||_{z} = (\int_{a}^{b} (f_{i})^{1/2})
$$
\n
$$
||f_{i}||_{z} = \int_{a}^{b} |f_{i}|
$$
\n
$$
||f_{i}||_{z} = \frac{1}{2} \int_{a}^{b} |f_{i}|
$$

Note We've seen "nour" andunes "netric" already. However, a "metric" may not induced from a "norm".

og.
$$
X = nM
$$
 - empty set

\n
$$
d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}
$$
\ndenote matrix

\nand matrix

\nand matrix

\nand matrix

\n
$$
\begin{cases} \frac{d}{dx} \cdot \
$$

Let: let
$$
(\overline{X}, d)
$$
 be a metric space. Then for any non-empty
\n $\nabla C \times$, $d(\overline{Y}, d(\overline{Y})$ is called a matrix subspace
\nof (\overline{X}, d) .

Notes: (i) metric subspace à a metric space. (i) We sumple write (\overline{Y},d) fa $(\overline{Y},d|_{\overline{Y}^{\alpha}})$ I) A metric subspace of a normed space needs <u>not</u> be a normed space, unless it is a vector subspace.

> $eq: (R^3, dz)$ is a normed space (3-dim, Euclidean sp.) 5² C R³ with induced motaic is clearly not a named space.