$$\frac{Pf \text{ of Thm} |.|b}{Step 1 - \forall \epsilon > 0, \exists a ztt-periodic Lip cts function g s.t.}$$

$$IIf - gI|_{z} < \epsilon/z$$

$$\frac{Pf}{S}: By \quad \text{Lemmal.3 (and its proof)}, \quad \forall E_1 > 0$$

$$\exists step function$$
$$S(x) = \sum_{j=0}^{N-1} m_j \propto_{I_j} (x)$$

where
$$m_{j} = \inf \{ f(x) = x \in [a_{j}, a_{j+1}] \}$$

$$\begin{cases} I_{j} = (a_{j}, a_{j+1}] \quad f_{n} = J_{j} \\ I_{0} = [a_{0}, a_{1}] \\ I_{0} = [a_{0}, a_{1}] \end{cases}$$
such that
$$\begin{cases} S \in f \quad and \\ \int_{-T}^{T} f_{-S} < \varepsilon_{1} \end{cases}$$

Since f is Riemann integrable, f is bounded. i.e. ∃M>O s.t. -M ≤ f ≤ M. This implies -M ≤ m_j ≤ M and long -M ≤ S ≤ M. Note that f ≥ S, we then have 0≤ f-S ≤ M.

$$\Rightarrow \int_{-\pi}^{\pi} (f-s)^2 \leq M \int_{-\pi}^{\pi} f-s < M \varepsilon,$$

Then choose $\delta > 0$ such $\delta < q_{j+1} - q_j$, j=1,2,..., N-1 and define a piecewise linear cartinuous function by $g(x) = \begin{cases} \frac{m_j - m_{j-1}}{\delta} (x - a_j) + m_{j-1}, & \text{for } x \in (q_j, q_j + \delta), & j=1,..., N-1 \\ S(x) & , & \text{otherwise} \end{cases}$

$$\int_{-\pi}^{\pi} (S-g)^{2} = \sum_{j=1}^{N-1} \int_{q_{j}}^{q_{j}+\delta} \left(S(x) - \frac{m_{j} - m_{j-1}}{\delta} (x-a_{j}) - m_{j-1} \right)^{2}$$

$$= \sum_{j=1}^{N-1} \int_{a_{j}}^{a_{j}+\delta} \left(m_{j} - \frac{m_{j} - m_{j-1}}{\delta} (x - a_{j}) - m_{j-1} \right)^{2}$$

$$= \sum_{j=1}^{N-1} \left(M_{j} - M_{j-1} \right)^{2} \int_{\alpha_{j}}^{\alpha_{j}+\delta} \left(\left| - \frac{X - \alpha_{j}}{\delta} \right|^{2} \right)^{2}$$

$$= \sum_{j=1}^{N-1} (M_j - M_{j-1})^2 \int_{q_j}^{q_{j+\delta}} \left(\frac{\delta + Q_j - \chi}{\delta}\right)^2$$

$$\leq \delta \sum_{j=1}^{N-1} (m_j - m_{j-1})^2$$

$$\leq M^2(N-1) \delta$$
Therefore
$$\int_{-\pi}^{\pi} (f - g)^2 = \int_{-\pi}^{\pi} ((f - s) + (s - g))^2$$

$$\leq 2 \int_{-\pi}^{\pi} (f - s)^2 + (s - g)^2$$

$$\leq 2 M \epsilon_1 + 2 M^2(N-1) \delta$$
Now, for any $\epsilon > 0$,
we first choose $\epsilon_1 = \frac{\epsilon^2}{4M}$

Then find the step as described with N & aj accordingly. Finally, choose

$$S = \min\left\{\frac{\epsilon}{4M^2(N-1)}, \alpha_{j+1} - \alpha_j\right\}_{j=1,\cdots,N}$$

 $\not\prec$

we conclude, the Lip. function g satisfies $\int_{-\pi}^{\pi} (f-g)^2 \leq \frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2} = \varepsilon^2$

⇒ 115-G112 < E

(In fait, our proof shows that if sixs is a step function on [a,b], (then VE>0, I lip function give) s.t. 11s-gilos < 32

Step 2 Completion of the proof.
Applying thin 1.7 to the function g in Step 1:

$$\exists N > 0$$
 s.t. $\|g - S_N g\|_{\infty} < \frac{\varepsilon}{2\sqrt{2\pi}}$
(Not the N in step 1)
Thus $\|g - S_N g\|_{z} = \left[\int_{-\pi}^{T} (g - S_N g)^{2} \int_{-\pi}^{t_{z}} < \left[z\pi \|g - S_N g\|_{\infty}^{2} \int_{-\pi}^{t_{z}} < \left[z\pi \|g - S_N g\|_{\infty}^{2} \right]^{t_{z}}$

By Corl.15,

$$\|f - \beta_N f\|_2 \leq \|f - \beta_N g\|_2$$

 $\leq \|f - g\|_2 + \|g - \beta_N g\|_2$ (Ex!)
 $\leq \epsilon_2 + \epsilon_2 = \epsilon$ (step1).

Finally,
$$\forall n \ge N$$
, set of generators of $\exists n \in St$ of generators of $\exists n$,
i. $\exists N \in \exists n$.
Hence $\forall n \ge N$, $\|f - \beta_n f\|_2 \le \|f - \beta_N f\|_2 \le \varepsilon$
i.e. $\lim_{n \ge \infty} \||\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \||\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_{n \ge \infty} \|\beta_n f - f\|_2 = 0$
i.e. $\lim_$

Cor 1.17 (a) Suppose that
$$f_1 \ge f_2$$
 are 2π -periodic integrable functions
on ET, π I with the same Fourier Series. Then
 $\underline{f_1 = f_2}$ almost everywhere.
(i.e. $f_1 = f_2$ except a set of measure zero.)
(b) Suppose that $f_1 \ge f_2$ are 2π -periodic continuous functions
with the same Fourier series. Then $\underline{f_1 = f_2}$

Recall: A set E is said to be of measure zero if $\forall E \geq 0, \exists countably}$ many intervals $\forall I_{k}$'s s.t. $E \subset \bigcup_{k} I_{k}$ a $\sum_{k} |I_{k}| \leq E$.

 $Pf: (a) \quad let \quad f = f_1 - f_2, \text{ then } a_n(f) = b_n(f) = 0 \quad \forall n \ge 0$ $\Rightarrow \quad f_n f = 0, \forall n \ge 0$ $Hence (Thm 1.16) \quad lim_{n \ge \infty} \quad \|f_n f - f\|_2 = 0 \Rightarrow (|f||_2 = 0)$ By theory of Riemann integral, f = 0 almost energywhere. (b) We still have $\|f\|_2 = 0$. As f_1, f_2 at $\Rightarrow f^2$ at $\Rightarrow 0$ $\Rightarrow \quad f^2 = 0. \quad \neq 0$

Cor I.12 (Parserval's Identity)
For every 2TT-periodic function
$$f$$
 integrable on ETT, T]
 $IIfII_{z}^{2} = 2TT q_{0}^{2} + TT \sum_{n=1}^{\infty} (Q_{n}^{2} + b_{n}^{2})$
where q_{0} , q_{n} , by one Fourier coefficients of f .

$$Pf: By def of an, bn$$

$$\int \overline{J\pi} a_0 = \langle f, \frac{1}{\sqrt{2\pi}} \rangle_2$$

$$\int \overline{\pi} a_n = \langle f, \frac{1}{\sqrt{\pi}} conx \rangle_2$$

$$\int \overline{\pi} b_n = \langle f, \frac{1}{\sqrt{\pi}} conx \rangle_2$$

$$n \ge 1$$

Then $\langle f, S_N f \rangle_2 = \langle (f - S_N f) + S_N f, S_N f \rangle_2$

By Corl.15,
$$S_N f = P_N f$$
 on E_N ,
.:. $f - S_N f$ orthogonal to the subspace E_N (E_X !)
i.e. $\langle f - S_N f$, $S_N f \rangle_2 = 0$
Hence $\langle f, f_N f \rangle_2 = \langle f_N f, f_N f \rangle_2 = 0$
 $= \int_{-T_1}^{T} (a_0 + \sum_{k=1}^N a_k (a_k k + b_k) a \overline{u} d k)^2 d x$
 $= 2\pi a_0^2 + \pi \sum_{k=1}^N (a_k^2 + b_k^2)$

Then
$$0 = \lim_{N \to \infty} \|f - s_N f\|_{z}^{2}$$

= $\lim_{N \to \infty} (\|f\|_{z}^{2} - 2\langle f, s_N f \rangle_{z} + \|s_N f\|_{z}^{2})$
= $\lim_{N \to \infty} (\|f\|_{z}^{2} - \|s_N f\|_{z}^{2})$

eq: Fourier series of
$$f_1(x) = x$$
 on FT_1TJ
 $f_1(x) = x \sim n \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{n} \sin Nx$ ($a_n = 0 \forall n = 9, 1, \dots$)

Def: A metric on
$$\mathbb{X}$$
 is a function
 $d: \mathbb{X} \times \mathbb{X} \rightarrow [0, +\infty)$ such that
 $\forall X, Y, Z \in \mathbb{X}$
(M1) $d(X, Y) \ge 0$ e "equality tolds $\neq X = Y$ ".
(M2) $d(X, Y) = d(Y, X)$
(M3) $d(X, Y) \le d(X, Z) + d(Z, Y)$
The pair (X, d) is called a metric space.

eq. z.1
$$(X = |R, d(X,y) = |X-y|)$$
 is a metric space.

eg. 2.2 let $X = IR^n$, $d_z(x,y) = \int_{x=1}^{\infty} (x_i - y_i)^2 (Euclidean methic)$ -for $X = (x_1, ..., x_n) = y = (y_1, ..., y_n) \in IR^n$. Then (IR^n, d_2) is a metric space. (Proof omitted, Ex!)

$$\frac{\log 2.3}{\log (x,y)} = \frac{n}{x^2 - 1} |x_i - y_i|$$

$$\int_{\infty}^{\infty} d_1(x,y) = \frac{n}{x^2 - 1} |x_i - y_i|$$

$$\int_{\infty}^{\infty} d_1(x,y) = \max_{x^2 - 1} |x_i - y_i|$$

Then $(\mathbb{R}^n, d_1) \ge (\mathbb{R}^n, d_\infty)$ are motric spaces.

Generalization of egs 2.2 e.2.3 to function spaces:

$$ag 2.4$$
 let C[a,b] = ? (real) continuous functions on [a,b] ?
 $\forall f, g \in C[a,b], dofine$
 $d_{eo}(f,g) = 11f - g11_{eo} = max ? (f(x) - g(x)] : x \in [a,b] ?$
Then (C[a,b], dos) is a metric space (Ex!)
 $f = 11f - g11_{eo}$
 $g = (largest gaps between grouphs)$
 $d_{eo}(f,g) = f = g1$

Similarly, one can define
$$d_1(f,g) = \int_a^b |f(x) - g(x)| dx$$

It is also easy to verify that (CTU, b], d1) is a metric space. (Ex!)

The natural generalization of the Euclidean metric to CCa,bJ is

$$d_{z}(f,g) = \int S_{a}^{b} |f-g|^{2}$$

Note that $d_2(f,g) = ||f-g||_2$ (is in Fourier series) (M1) a(M2) are clear for d_2 (because f,g etc.). An Cauchy-Schwarg \Rightarrow $||f+g||_2 \leq ||f||_2 + ||g||_2$ (Ex!)

<u>Note</u>: We are restricted to the space CTa, 5] of continuous functions, not the bigger space RTa, 5] of Riemann integrable functions.

eg. 25 On
$$X = R[a,b] = R[a,b] = R[a,b] + R[a,b$$

However, (M1) is not satisfied:

$$d_1(f,g) = 0 \iff f = g$$
 almost everywhere
 $\Rightarrow f = g$ (at every point)

-i di so not a metric on RE9,6],

To overcome this, we consider
$$X = \frac{RTq,b^2}{2}$$

where "~" is an equivalent relation on RTq,b]
defined by $f \sim g \Leftrightarrow f = g$ almost everywhere.
(check: "~" is an equivalent relation.)
Then elements of $\frac{RTq,b_1}{2}$ can be represented as ($f \in RTq, b_1$)
 $Tf = \frac{1}{g} \in RTq, b_1 = g = f$ almost everywhere f
Now define \overline{d}_1 on $\frac{RTq,b_1}{2}$ by $\overline{d}_1(\overline{f}, \overline{g}) = d_1(f, g)$

Check:
$$d_i$$
 is well-defined
i.e. indep. of the choice of representatives $f \ge g$:
 $\forall f_i \in \overline{f}, g_i \in \overline{g}$.
 $d_i(f_i, g_i) = \int_a^b |f_i - g_i|$
 $\leq \int_a^b |f_i - f_i| + \int_a^b |f_j - g_i|$
 $= d_i(f_i, g_j)$

Subilarly $d_1(f,g) \leq d_1(f_1,g_1)$... $d_1(f,g) = d_1(f_1,g_1)$.

Then it is straight forward to verify that $(R[a,b], \overline{d},)$ is a metric space.

Similarly for $(R^{ta,b}/k, \tilde{d}_z)$ is a metric space xnote that \tilde{d}_z is the L^2 -distance defined before: $\tilde{d}_z(\bar{f}, \bar{g}) = (\int_a^b |f-g|^2)^{1/2}$

Def: A nome II. II is a function on a real vector space
$$X$$

to $(0, \infty)$ s.t. $\forall x, y \in X \neq d \in \mathbb{R}$
(NI) $||x|| \ge 0 \neq "||x|| = 0 \Leftrightarrow x = 0"$.
(N2) $||dx|| = |x|||x||$
(N3) $||x+y|| \le ||x|| + ||y||$
The pair $(X, ||\cdot||)$ is called a normed space.
And $d(x,y) \stackrel{\text{dof}}{=} ||x-y||$ is called the matrix induced by the
horm $||\cdot||$.

$$(E_X: Show that d(X,Y) = ||X-Y|| is a metric with the propertyd(dX, dY) = |x| d(X,Y), $\forall a \in \mathbb{R}$$$

$$\underbrace{eqs}:(a) || \times ||_{z} = (\sum x_{i}^{z})^{l_{z}}$$

$$|| \times ||_{z} = \sum || \times c|$$

$$|| \times ||_{w} = \max\{\langle |X_{1}|, \dots, |X_{n}|\}$$

$$(b) || + ||_{z} = (\sum_{a}^{b} || + i)^{l_{z}}$$

$$|| + i|_{w} = \sup\{\langle |H(x)| = x \in [a, b]\}$$

$$(c) = \sum_{a}^{b} || + i = \sum_{a}^{b}$$

Note We've seen "norm" induces "metric" already. However, a "metric" may not induced from a "norm".

eg. X = non-empty set

$$d(x,y) = \begin{cases} & if x \neq y \\ 0 & if x = y \end{cases}$$

$$\underline{discrete motaic} \quad on X \qquad (Ex: check this is a metric)$$
• X not necessary a vector space, so d is not induced by nown.
• Even X is a vector space :

$$\begin{cases} & if = d(\alpha x, \alpha y) = i\alpha i d(x, y) = \begin{cases} |\alpha| \\ 0 \end{cases}$$
Cartradiction for $|\alpha| \neq 1$ (for $x \neq y$)

Def: Let
$$(X,d)$$
 be a metric space. Then for any non-empty
 $T \subset X$, $(T, d|_{TXT})$ is called a metric subspace
of (X,d) .

Notes: (i) metric subspace is a metric space. (ii) We suiple write (F,d) for (F, d | FxF) (iii) A metric subspace of a normed space needs not be a normed space, unless it is a vector subspace, eq: (R³, dz) is a normed space (3-dim. Euclidean sp.)

 $5^2 \subset \mathbb{R}^3$ with induced motric is clearly not a normed space.