515 Mean Convergence of Fourier Series

Notation:

 $RET, \pi J =$ set of Riemann utegrable (real) functions on $FT, \pi J$.

Qef:(1) $V f, g \in RFT, \pi J$, U_0	L ² -product (L ² invar product)
\bar{w} given by	$(\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(x)g(x) dx$
(Note: fa CPx $f(x)dx$	$(\frac{1}{\sqrt{3}} \int_{-\pi}^{\pi} f(x)g(x) dx)$
(a) The L ² -norm of $f \in RFT, \pi J$ \bar{w}	$ f _{2} = \sqrt{\langle f, f \rangle_{2}}$
(b) The L ² -distance between $f, g \in RFT, \pi J$ \bar{w}	$ f-g _{2}$
(c) The L ² -distance between $f, g \in RFT, \pi J$ \bar{w}	$ f-g _{2}$
(d) We said that $\frac{f_n \rightarrow f_n}{ f_n - f _2 \rightarrow 0}$ $\alpha, n \rightarrow \infty$	
(f.e., $\lim_{n \rightarrow \infty} \int_{-\pi}^{\pi} (f_n - f)^{2} dx = 0$, "mean convergence")	

Cautim = L²-num & L²-distance on RETIT are not really
\n'num'' & "distance" in the strict sense as
\n
$$
\begin{array}{rcl}\n\text{If } ||f||_2 = 0 & \Rightarrow & f = 0 \text{ in RETIT} \\
\text{If } ||f-g||_2 = 0 & \Rightarrow & f = 9 \text{ in RETIT} \\
\text{If } ||f-g||_2 = 0 & \Rightarrow & f = 9 \text{ in RETIT} \\
\text{(we only have } \quad \int f = 0 \text{ almost everywhere} \\
\text{Thus, } ||f-g||_2 = 0 & \Rightarrow & \text{we have} \\
\end{array}
$$

<u>Note: It is not fard</u> to show that

$$
S_{n} \rightarrow f \text{ uniformly } \Rightarrow \|f_{n}-f\|_{2} \rightarrow 0
$$
\n
$$
H \text{ or } \|f_{n}-f\|_{2} \rightarrow 0 \quad \Rightarrow \quad f_{n} \rightarrow f \text{ uniformly } \}
$$
\n
$$
\left(\begin{array}{ccccccc} \text{i.e.} & \|f_{n}-f\|_{2} \rightarrow 0 & \Rightarrow & \|f_{n}-f\|_{2} \rightarrow 0 \\ & \text{j.e.} & \|f_{n}-f\|_{2} \rightarrow 0 & \Rightarrow & \|f_{n}-f\|_{2} \rightarrow 0 \\ & \text{j.e.} & \|f_{n}-f\|_{2} \rightarrow 0 & \Rightarrow & \|f_{n}-f\|_{2} \rightarrow 0 \end{array}\right)
$$

(not even pointure courrise to 0, e ser pointure luit is discris.)

Application to Fourier Senies

Carsider the functions on ET, TI:

$$
\int_{0}^{2} \int_{0}^{\pi} = \frac{1}{\sqrt{2\pi}} \quad \text{(const. function)}
$$
\n
$$
\varphi_{0} = \frac{1}{\sqrt{\pi}} \text{ (20.01)}
$$
\n
$$
\varphi_{1} = \frac{1}{\sqrt{\pi}} \text{ (20.01)}
$$
\n
$$
\varphi_{2} = \frac{1}{\sqrt{\pi}} \text{ (20.01)}
$$

Then

$$
\sqrt{m} \sqrt{\pi}
$$

\n
$$
\sqrt{m} \sqrt{m} \times_{z} = \begin{cases} 1, & m = n \\ 0, & m \neq n \end{cases}
$$

\n
$$
\sqrt{m} \sqrt{m} \times_{z} = 0, \quad \forall m, n \qquad (check.)
$$

\n
$$
\sqrt{m} \sqrt{m} \times_{z} = \begin{cases} 1, & m = n \\ 0, & m \neq n \end{cases}
$$

 \therefore $\{\varphi_0 = \frac{1}{\sqrt{2\pi}}\}$, $\varphi_n = \frac{1}{\sqrt{\pi}}$ costra), $\psi_n = \frac{1}{\sqrt{\pi}}$ all $n \times \xi_{n=1}^{\infty}$ can be regarded as an "athonormal basis" in RT-T, TTJ.

Notation : We denote
\n
$$
E_N \stackrel{def}{=} \text{span}\left\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{4}}\text{ (GeV)} \right\}_{n=1}^N
$$
 ($\text{dim } E_N = 2N+1$)
\n $= (2N+1) \text{ dim}^2$ with subspace of RET, $T = \text{spanned by}$
\nthe lst (2N+1) trigonomata c. 5modras.

In general, if we have an orthonomial at (a orthonormal family)

$$
\begin{cases} 7 \Phi_{n} 5n=1 \text{ in } R\overline{C} \overline{T} \text{, } \overline{T} \text{ with} \\ < \Phi_{n}, \Phi_{m} >_{z} = \delta_{mn} \end{cases}
$$

we set
$$
\mathcal{A}_n = \text{span}\langle \varphi_1, ..., \varphi_n \rangle
$$

= n-diú l subspace spanned by the 1st n
Surstéms in the orthonormal set

Then V f E RI-T, TT, one considers the minimization problem \bar{u} $f \{ \|f-g\|_{2} = 96dn \}$

Prop 1.14 : The unique minimizer of
$$
\underset{k=1}{\underbrace{ax_{1} + a_{2}}} \overrightarrow{b_{1} + a_{2}}
$$
 is
attained at the function $g = \sum_{k=1}^{n} \langle f, \phi_{k} \rangle_{2} \phi_{k} \in A_{n}$

 Pf : Note that minimize $||f-g||_2 \iff$ unimige $||f-g||_2^2$

Now
$$
\forall g \in \mathcal{A}_n
$$
, $g = \sum_{k=1}^{n} \beta_k \varphi_k$ for some β_1, \dots, β_n
and

$$
||\{\varphi\}||_{\infty}^2 = \int_{-\infty}^{\infty} |\varphi - \sum_{k=1}^{n} \beta_k \varphi_k|^2
$$

$$
||\xi - \hat{g}||_2^2 = \sum_{T} \hat{g} \xi - \sum_{k=1}^{N} \hat{g}_k \hat{\phi}_k|^2
$$

can be regarded as a function of β = ($\beta_1, ..., \beta_n$) and let denote it by $||\xi - \hat{g}||_2^2 = \Phi(\beta_1, \cdots, \beta_n) = \Phi(\beta)$

We first need to show that
\n
$$
\mathbb{E}(\beta_1 \cdots \beta_n) \Rightarrow \infty \qquad \text{d}\mathcal{D} \qquad ||\beta|| = \sqrt{2 \beta \epsilon^2} \Rightarrow +\infty
$$
\n
$$
\mathbb{E}(\beta) = \int_{-\pi}^{\pi} (f - \sum_{k=1}^{n} \beta_k \phi_k)^2
$$
\n
$$
= \left(\int_{-\pi}^{\pi} f^2\right) - 2 \sum_{k=1}^{n} \beta_k \left(\int_{-\pi}^{\pi} f \phi_k\right) + \sum_{k=1}^{n} \beta_k \beta_k \left(\int_{-\pi}^{\pi} f \phi_k\right)
$$
\n
$$
= ||f||_{2}^2 - 2 \sum_{k=1}^{\infty} (\frac{\beta_k}{\sqrt{2}})(\sqrt{2} \langle f, \phi_k \rangle_2) + \sum_{k=1}^{n} \beta_k^2 \left(\int_{-\pi}^{\pi} f \phi_k\right)
$$
\n
$$
\Rightarrow ||f||_{2}^2 - \sum_{k=1}^{\infty} (\frac{\beta_k}{2} + 2 \langle f, \phi_k \rangle_2) + \sum_{k=1}^{n} \beta_k^2
$$
\n
$$
= ||f||_{2}^2 - 2 \sum_{k=1}^{\infty} \langle f, \phi_k \rangle_2^2 + \frac{1}{2} \sum_{k=1}^{n} \beta_k^2 \Rightarrow +\infty
$$
\n
$$
\text{and } ||\beta|| \Rightarrow +\infty
$$

Clearly, $\Phi(\beta)$ is cartinums, \therefore $\widehat{\mathcal{P}(\beta)}$ attains a minimum at some funite point $\beta = (\beta_1, \cdots, \beta_n)$ Than easy calculus

$$
\Rightarrow \text{ the unique maximum } \tilde{u} \text{ given by}
$$
\n
$$
\beta k = \langle \xi, \phi_k \rangle_z \quad \forall k = 1, \dots, N
$$

Notes: (1) The nuiiviger
$$
g = \sum_{k=1}^{n} \langle f, \phi_k \rangle_z \phi_k
$$
 of $||f - g||_z$ over \mathcal{A}_n
\n $\dot{\phi}$ called the orthogonal projection of f onto \mathcal{A}_n as
\nduoted by Prf ($\in \mathcal{A}_n$).

(2)
$$
dist(f, \&n) \quad (\stackrel{\text{def}}{=} \overline{u}t \{ dist(f, g) : \text{gcd} u \})
$$

= $(|f - P_nf|)_2$

Cor1.15	For 2T-periodic	fundian	integnable on	FT, T	and
$n > 1$,	$ f - S_n f _2 \le f - g _2$,				
$\int_{0}^{n+1} f$ partial sum	Hg of the <i>four</i>				
$\int_{0}^{n+1} f$ from <i>coies</i>	$g = d_0 + \sum_{k=1}^{N} (d_k \omega_k x + \beta_k \sin_k x)$				
$\int_{0}^{n+1} f$ from <i>coies</i>	$g = d_0 + \sum_{k=1}^{N} (d_k \omega_k x + \beta_k \sin_k x)$				

Pf: By def. of Fourier coefficients $S_{n}f = P_{n}f$ of the Span $\left\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{11}} \cosh x, \frac{1}{\sqrt{11}} \sinh x \right\}_{k=1}^{\infty}$ $\begin{cases} \alpha_{0} = \langle \frac{1}{3} \rangle_{2} \cdot \frac{1}{\sqrt{2\pi}} \\ \alpha_{k} \omega_{k} x = \langle \frac{1}{3} \rangle_{2} \frac{1}{\sqrt{\pi}} \omega_{k} x \rangle_{2} \cdot \frac{1}{\sqrt{\pi}} \omega_{k} x \\ \beta_{k} \omega_{k} x = \langle \frac{1}{3} \rangle_{2} \frac{1}{\sqrt{\pi}} \omega_{k} x \rangle_{2} \cdot \frac{1}{\sqrt{\pi}} \omega_{k} x \end{cases}$ (E_{k}) χ Thm/lb Fa 2Trpeniodic (real) function 5 (Riemann) uitegrable $MCFUT$ $\boxed{\lim_{n \to \infty} ||S_n - S||_2 = 0}$

i.e. the 11th partial sum of the Fourier Series of 5 converges to f in L^2 -sense.