Notes: (1) Fa $X = \pm \pi$, Fourier series of $f(x) \leq X \neq \pi$
fa g1.1) $(fa$ eglil)

But
$$
\xi_1(\pm \pi) = \pm \pi
$$
 $\xi_1 = 0$
\n $\xi_1(\pm \pi) = \pi$
\n $\xi_1(\pi) = \pi$

Notation	4	18	0	2	11	small of
Let $\{x_1x_2, x_3, x_4\}$ be a sequence, then						
(i) $x_n = O(n^s) \iff x_n \le Cn^s$ for some most. $C > 0$						
(ii) $x_n = o(n^s) \iff x_n /n^s \to 0$ as $n \to \infty$.						

$$
\mathcal{Q}_{\mathcal{S}}: (1) \quad X_{n} = \frac{2(-1)^{n+1}}{n} \mathcal{A} \bar{u}_{1} \mathfrak{a} \chi = \mathcal{O}(n^{-1}) = \mathcal{O}\left(\frac{1}{n}\right), \quad (|X_{n}| \leq \frac{2}{n})
$$

(ii)
$$
\chi_n = \log n = o(n) \quad (\frac{\log n}{n} \to 0 \text{ as } n \to \infty)
$$

Eq 1.2
$$
5_{z}(x) = x^{2}
$$
 restricted to $(-\pi,\pi)$

\nExtaussian to a $z\pi$ -periodic

\nSwitch f_{z} on \mathbb{R}

\ng
\n $\frac{9}{\pi}$

\ng
\n $\frac{1}{\pi}$

\ng
\n $\frac{1}{\pi}$

\ng
\n $\frac{1}{\pi}$

\nh
\n $\frac{1}{\pi}$

\ng
\n $\frac{1}{\pi}$

\nh
\n $\frac{1}{\pi}$

\nh
\n $\frac{1}{\pi}$

\nh
\n $\frac{1}{\pi}$

\ng
\n $\frac{1}{\pi}$

\nh
\n $\$

If
$$
\omega
$$
 an every series of integration to find that

\n
$$
\frac{1}{2}(x) = x^2 \sim \frac{\pi^2}{3} - 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \omega_0 n x \quad (Ex \, ! \,)
$$
\nOn $\text{Sec. that } \alpha_n = \mathcal{O}(\frac{1}{n^2}) \Rightarrow \sum |a_n| < \infty$

\n
$$
\Rightarrow \text{Fourier series, Cauchy to a continuous function.\n(Will it, the four function $\frac{1}{2}z$?

\nSee later discussion
$$

Obgnuation:	Fgs	1	odd function	—	Since series
-even function	—	cosine series			
This is true in general	1	($Ex!$)			

Complex Fourier Series

Qf: (1) A complex trigonometric series is a series of the four	
$\frac{\alpha}{2}C_{n}e^{inx}$	$\frac{\alpha}{2}C_{n}e^{inx}$
$\frac{1}{2}C_{n}e^{inx}$	$\frac{\alpha}{2}C_{n}e^{inx}$
$\frac{1}{2}C_{n}e^{inx}S_{n=-\infty}^{m} = \frac{\alpha}{\infty}$ a <u>biseguence</u> of opx-valued functions	
$\frac{1}{2}C_{n}e^{inx}S_{n=-\infty}^{m} = \frac{\alpha}{2}$ a <u>biseguence</u> of opx-valued functions	
$\frac{1}{2}C_{n}e^{inx}S_{n=-\infty}^{m} = \frac{\alpha}{2}$ a <u>gü</u> ugeut at x dy	
$\frac{1}{2}C_{n}e^{inx}S_{n=-\infty}^{m} = -\frac{\alpha}{2}$	
$\frac{1}{2}C_{n}e^{inx}S_{n=-\infty}^{m} = -\frac{\alpha}{2}$	

Def: Complex Fourier Series of a 2tt periodic opx-valued function f

\nwhich is integrable in Etf,TJ, divided by

\n
$$
f(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}
$$
\nis a 4 px trigonometric series with (cpx) Fourier coefficient

\nCon defined by

\n
$$
\frac{1}{c_0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-i\alpha x} dx, \quad \forall \alpha \in \mathbb{Z}
$$

Which that can be
$$
\frac{1}{n} \int_{\frac{\pi}{n}}^{\frac{\pi}{n}} f(x) e^{-imx} dx = \sum_{-\infty}^{\infty} C_n e^{inx}
$$

\nThus, $f(x) = \sum_{-\infty}^{\infty} C_n e^{i(n-m)x}$

\nThus, $f(x) e^{-imx} = \sum_{-\infty}^{\infty} C_n e^{i(n-m)x}$

\nThus, $\int_{-\pi}^{\pi} f(x) e^{-imx} dx = \sum_{-\infty}^{\infty} C_n \int_{-\pi}^{\pi} e^{i(n-m)x} dx$

$$
\int_{-\pi}^{\pi} \int_{-\pi}^{x} f(x)e^{-iwx} dx = \begin{cases} 2\pi, & \text{if } n=m \\ 0, & \text{if } n=m \end{cases}
$$

\n
$$
\Rightarrow \int_{-\pi}^{\pi} f(x)e^{-iwx} dx = C_m \cdot 2\pi \quad \text{if } n=m
$$

Relationship between (Real) Farrier Senies & Cpx Fourier Senies for a real-valued function f.

$$
By G_{N} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-\lambda x} dx
$$

=
$$
\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) (\omega Nx - \lambda \omega) dx
$$

=
$$
\frac{1}{2} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) (\omega Nx) dx \right) - \frac{1}{2} \lambda \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \omega Nx \right)
$$

Therefore

\n
$$
\begin{aligned}\n\frac{1}{2}u & n=0, & \Gamma_0 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \Omega_0 \\
\frac{1}{2}u & n \ge 1, & \Gamma_0 &= \frac{1}{2} \int_{-\pi}^{\pi} f(x) dx = \Omega_0\n\end{aligned}
$$

$$
\int u^{2} = \int_{0}^{2} f(x) \, u_{0}(-n)z + e
$$
\n
$$
C_{n} = \frac{1}{2} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, u_{0}(-n)x \, dx \right) + \frac{1}{2} \int_{0}^{2} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, u \, \dot{u}_{1}(-n)x \, dx \right)
$$
\n
$$
= \frac{1}{2} \, \alpha_{n} + \hat{\lambda} \left(\frac{1}{2} \omega_{n} - \frac{1}{2} \omega_{n} \right)
$$
\n
$$
\therefore \int_{0}^{2} \frac{1}{2} \left(\alpha_{n} - \frac{1}{2} \omega_{n} \right) \int_{0}^{2} f(x \, dx - \omega_{n}) \, du \, dx
$$
\n
$$
C_{n} = \begin{cases} \frac{1}{2} \left(\alpha_{n} - \frac{1}{2} \omega_{n} \right) & \text{for } n \leq -1 \\ \frac{1}{2} \left(\alpha_{n} - \frac{1}{2} \omega_{n} \right) & \text{for } n \leq -1 \end{cases}
$$

Corollary =
$$
5 \div \omega
$$
 a real-valued function, then
\n $C_{-n} = \overline{C_n} \xrightarrow{C_{-n}} \neg p \times \neg p$ where x is a real-valued function.

(Pf = Easy)

Prop	Let f be a 2π -puidic real-valued function which is
$diff$ could be on $E^{\pi} \pi$ with $\frac{f'}{\pi}$ integrable on $E^{\pi} \pi$.	
Denote the Fourier coefficients of $f \ge f'$ by	
$diff$	$diff$
$diff$	

(So it is more convenient to work with anx Fourier roefficients when derivatives involved Pf : $a_n(f') = \frac{1}{\pi} \int_{\frac{\pi}{2}}^{1} f(x) \cos nx \, dx$ $\left(i\text{arg}m\text{diag}(n\$ $(f(\pi) = f(-\pi))$ $I=\frac{y}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\,dx = n\,b_n(f)$ $Sainilarly$ for $b_n(f') = -n a_n(f)$ (Check!) Fa $Ch(f')$, either from the above famula relating cn to ane by or integration by part directly $C_0(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \left[f(x)e^{inx} \frac{1}{\pi} + (in) \int_{-\pi}^{\pi} f(x)e^{-iar} dx \right] = inc_n(f)$

Runates	(1) 5 is differentiable on $[-T,T]$ does $n' \in d\psi$ lies
f is (Riemann) integrable on $[-T,T]$. So the conditions	
\overrightarrow{u} the Prop are needed.	
A countercosample can be constructed from the example	
$g(x) = \begin{cases} x^{\frac{1}{2}} \sin x, & x > 0 \\ 0, & x = 0 \end{cases}$ \n	
$f(x) = \begin{cases} \frac{1}{2} x^{\frac{1}{2}} \sin x - \frac{1}{x} x \cos x, & x > 0 \\ 0, & x = 0 \end{cases}$ \n	
$f(x) = \begin{cases} \frac{1}{2} x^{\frac{1}{2}} \sin x - \frac{1}{x} x \cos x, & x > 0 \\ 0, & x = 0 \end{cases}$ \n	
$f(x) = \begin{cases} x^{\frac{1}{2}} \sin x - \frac{1}{x} x \cos x, & x > 0 \\ 0, & x = 0 \end{cases}$ \n	
$f(x) = \begin{cases} x^{\frac{1}{2}} \sin x - \frac{1}{x} x \cos x, & x \neq 0 \\ 0, & x = 0 \end{cases}$ \n	
$f(x) = \begin{cases} x^{\frac{1}{2}} \sin x - \frac{1}{x} x \cos x, & x \neq 0 \\ 0, & x = 0 \end{cases}$ \n	
$f(x) = \begin{cases} x^{\frac{1}{2}} \sin x - \frac{1}{x} x \cos x, & x \neq 0 \\ 0, & x = 0 \end{cases}$ \n	
$f(x) = \begin{cases} x^{\frac{1}{2}} \sin x - \frac{1}{x} x \cos x, & x \neq 0 \\ 0, & x = 0 \end{cases}$ \n	
<math< td=""></math<>	

Fourier series of 2T periodic real functions let f be ^a 2T periodic function Then go f Ix is 2T periodic Therefore sub ^y Ex f Ex ga ao ^t lancesaxtbusuinx with a ^o figexdx Itfly dy an II go auxax fifty as ng dy but IF gixssainxdx SIfly sin mfg dy

$$
f(y) \sim \alpha_0 + \sum_{n=1}^{\infty} \left[a_n \omega_0(\frac{n\pi}{T}y) + b_n \sin(\frac{n\pi}{T}y) \right]
$$
\n
$$
\omega_0 = \frac{1}{2T} \int_{-T}^{T} f(y) dy
$$
\n
$$
\omega_0 = \frac{1}{T} \int_{-T}^{T} f(y) \omega(\frac{n\pi}{T}y) dy
$$
\n
$$
\omega_0 = \frac{1}{T} \int_{-T}^{T} f(y) \sin(\frac{n\pi}{T}y) dy
$$
\n
$$
h \ge 0
$$

à called Fourier senies of the 2T-periodic function f.

1.2 Riemann Lebesgue lemma Recall A stepfunction on ET ^T is ^a function of the fam S x EjSj XI where is Ij Aj age fu j j ^N ^l I I I Io Tao ^a ^I a'tail ^I ^T do ^a ^s any an ^T do I di's Faa set E Xe ^I XE ^E O XGE is the characteristic functionfor ^E Iii Sj ^E IR j ^O ^N ^l at an lemmata Foreverystepfunction ^S integrable on ET ^I I constant ^C ⁰ Cindep of ⁿ butdepends on ^s suchthat lands ^I ^Ibuts ^l ^s f ^f nel where ants bn ^s are Fourier coefficients of ^s Pf Let Sh If SjXz ^x then fan ⁷¹ Tanis SI If sjxg.la an ^x dx

$$
= \sum_{j=0}^{10-1} S_j \int_{\alpha_j}^{\alpha_{j+1}} \omega \, \text{d}x \, \text{d}x
$$

$$
= \frac{1}{2} \int_{3}^{\pi} S_{j} \int_{0}^{\pi} [A\hat{u} (n\theta_{jH}) - A\hat{u} (n\theta_{j})]
$$
\n
$$
= \frac{1}{2} \int_{3}^{\pi} S_{j} \int_{0}^{\pi} [A\hat{u} (n\theta_{jH}) - A\hat{u} (n\theta_{j})]
$$
\n
$$
\Rightarrow |Q_{M}(s)| \leq \frac{1}{n} \cdot \frac{2}{\pi} \sum_{j=0}^{M-1} S_{j} = \frac{C}{n} \int_{s}^{\frac{M}{2}} C_{\pi} = \frac{8}{\pi} \sum_{j=0}^{M-1} S_{j}.
$$
\n
$$
\frac{C_{\overline{u}\hat{u}\hat{u}}[A\hat{u} + \int_{0}^{\pi} [A\hat{u} (s)] \leq \frac{C}{n} \int_{0}^{\pi} M \pi \int_{0}^{\pi} M \pi \int_{0}^{\pi} \int_{0}^{\pi} C_{\pi} = \frac{8}{\pi} \sum_{j=0}^{M-1} S_{j}.
$$
\n
$$
\frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} (S_{\pi} - S) \leq \xi
$$
\n
$$
\frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} S_{\pi} = -\pi \int_{0}^{\pi} S_{\pi}.
$$
\n
$$
\frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} S_{\pi} = -\pi \int_{0}^{\pi} S_{\pi}.
$$
\n
$$
\frac{1}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} S_{\pi} = \frac{1}{\pi} \int_{0}^{\pi} S_{\pi}
$$

Now we can prove

ThmII (Riemann-Lobsegue humna)
The Fourier coefficients of a 211-periodic function f ùitografile
on [T,T] awayel to a as N
$$
\rightarrow
$$
+os.

$$
\begin{array}{lll}\n\text{Pf}: & \text{H} \text{E>0, I}{\text{num}} \text{ I.3} \Rightarrow \exists \text{step function } S \text{ s.t.} \\
& \text{S} \text{f} & \text{A} \quad \text{S}^{\pi} \text{ (f-s)} < \frac{\epsilon}{2}\n\end{array}
$$

$$
T_{\text{lowerfree}} \quad |a_{\eta}(\xi)-a_{\eta}(s)| = \frac{1}{\pi} \left| \int_{-\pi}^{\pi} (f \cdot s) ds \cos \alpha x \, dx \right|
$$
\n
$$
\leq \frac{1}{\pi} \int_{-\pi}^{\pi} f \cdot s < \frac{\varepsilon}{2\pi} \qquad \text{(6. } f \geq s \text{)}
$$

By lemma (2,
$$
\exists
$$
 N₀ > 0 s_ot.
\n $|a_{\alpha}(s)| < \frac{\epsilon}{2}$, Y n > 0
\nwhere C_{as}ix kuma(2)

$$
|4n(c) | 4n(f)| \leq |a_{n}(s)| + |a_{n}(f) - a_{n}(s)|
$$
\n
$$
< \frac{c}{2} + \frac{e}{2\pi} < \epsilon \quad \text{where}
$$
\n
$$
\therefore a_{n}(f) \geq 0 \quad \text{and} \quad n \geq +\infty.
$$

 $Sini(1$ arly for $b_n(f)$.