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Abstract

This is for limit of functions and provides counterexamples.

Counterexamples

This section is to provide or let you try counterexamples for various analysis con-
cepts.
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no Completeness/ Monotone convergence theorem/ Cauchy criterion

the space of rational numbers is not complete, think of any rational sequence
converging to v/2

. no sequential criterion

the space of function with uniform convergence, take a pointwise convergent se-
quence of functions but not uniformly convergent

convergent but not contractive sequence

a sequence with limits (from subsequences) from no other limsup and liminf
a sequence with 3 limits (from subsequence)

a sequence with any number of limits

(not possible) a sequence with no monotone subsequence



Section 4.1

9. Use either the &-8 definition of limit or the Sequential Criterion for limits, to establish the
following limits.
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10. Use the definition of limit to show that
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11. Use the definition of limit to prove the following.
2x+3 x? - 3x
1 = by bk =
@ 11—124x—9 3 ®) x]—l,v];]': x+3
12. Show that the following limits do not exist.
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(a) }cl_l"I(]]P (x>0), (b) }cn_'n'aﬁ (x>0),
(c) lin(ll (x +sgn(x)), (d) lina sin(l/xz).
L3
Section 4.2
1. Apply Theorem 4.2.4 to determine the following limits:
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2. Determine the following limits and state which theorems are used in each case. (You may wish
to use Exercise 15 below.)
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4. Prove that lin:J cos(1/x) does not exist but that lilrax cos(1/x) = 0.
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Section 4.3

AT aru—

4. Let c€ IR and let f be defined for x € (¢, 00) and f(x) > 0 for all x € (¢,00). Show that
limf = oo if and only if lim 1/f = 0.
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5. Evaluate the following limits, or show that they do not exist.
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(e) lim (Vx+1)/x (x> —1), (H  lim (Vx+1)/x (x>0),
x5 Y X —x

®) 3?010\/3+37 7(x> 0), 0 lim Y=ol (x> 0)



