MATH2050B tutorial 05

October 16, 2022

Abstract

This is for limit superior, series, function limits. The questions to work on are: new questions (for limit superior), 3.7: 10-18 (for series), 4.13: 9-12

New Questions

- 1. Find the limit, limit superior/inferior for each of the following sequences (a_n) (if they exist):
 - (a) $a_n = \frac{(-1)^n}{n+1}$ (b) $a_n = n(-1)^n$ (c) $a_n = (-1)^n + (-1)^{n+1}$ (d) $a_n = (-1)^n + (-1)^{n+2}$ (e) $a_n = n\sin(\frac{2}{n})$ (f) $a_n = \sin(m\pi) + \cos(m\pi)$ (g) $a_n = 2(-1)^n + \frac{n}{n+1}$ (h) $a_n = \sin n$ (i) $a_n = \tan n$ (j) $a_n = \frac{n}{\log n}$ (k) $a_n = \prod_{i=1}^n n \sin n$ (l) $a_n = n \sin(\frac{n}{2})$
- 2. If sequence (a_n) is convergent and (b_n) arbitrary sequence, then

$$\limsup(a_n + b_n) = \limsup a_n + \limsup b_n$$

3. Prove that if sequence (a_n) with each term nonzero such that $\liminf \frac{a_{n+1}}{a_n} = \ell > 1$, then (a_n) is divergent. Can it contain a convergent subsequence? What if $\ell = 1$?

Section 3.7

- 10. Use an argument similar to that in Example 3.7.6(f) to show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ is convergent.
- 11. If $\sum a_n$ with $a_n > 0$ is convergent, then is $\sum a_n^2$ always convergent? Either prove it or give a counterexample.
- 12. If $\sum a_n$ with $a_n > 0$ is convergent, then is $\sum \sqrt{a_n}$ always convergent? Either prove it or give a counterexample.
- 13. If $\sum a_n$ with $a_n > 0$ is convergent, then is $\sum \sqrt{a_n a_{n+1}}$ always convergent? Either prove it or give a counterexample.
- 14. If $\sum a_n$ with $a_n > 0$ is convergent, and if $b_n := (a_1 + \cdots + a_n)/n$ for $n \in \mathbb{N}$, then show that
- $\sum b_n$ is always divergent. 15. Let $\sum_{n=1}^{\infty} a(n)$ be such that (a(n)) is a decreasing sequence of strictly positive numbers. If s(n)denotes the *n*th partial sum, show (by grouping the terms in $s(2^n)$ in two different ways) that

 $\frac{1}{2}(a(1) + 2a(2) + \dots + 2^{n}a(2^{n})) \le s(2^{n}) \le (a(1) + 2a(2) + \dots + 2^{n-1}a(2^{n-1})) + a(2^{n}).$ Use these inequalities to show that $\sum_{n=1}^{\infty} a(n)$ converges if and only if $\sum_{n=1}^{\infty} 2^n a(2^n)$ converges. This result is often called the **Cauchy Condensation Test**; it is very powerful.

- 16. Use the Cauchy Condensation Test to discuss the *p*-series $\sum_{n=1}^{\infty} (1/n^p)$ for p > 0.
- 17. Use the Cauchy Condensation Test to establish the divergence of the series:

(a)
$$\sum \frac{1}{n \ln n}$$
,
(b) $\sum \frac{1}{n(\ln n)(\ln \ln n)}$,
(c) $\sum \frac{1}{n(\ln n)(\ln \ln n)(\ln \ln \ln n)}$.

18. Show that if c > 1, then the following series are convergent:

(a)
$$\sum \frac{1}{n(\ln n)^c}$$
, (b) $\sum \frac{1}{n(\ln n)(\ln \ln n)^c}$

Section 4.1

- 9. Use either the ε - δ definition of limit or the Sequential Criterion for limits, to establish the following limits.
 - (a) $\lim_{x \to 2} \frac{1}{1-x} = -1$, (b) $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$, (c) $\lim_{x \to 0} \frac{x^2}{|x|} = 0$, (d) $\lim_{x \to 1} \frac{x^2 - x + 1}{x+1} = \frac{1}{2}$.
- 10. Use the definition of limit to show that

(a)
$$\lim_{x \to 2} (x^2 + 4x) = 12$$
, (b) $\lim_{x \to -1} \frac{x+5}{2x+3} = 4$.

11. Use the definition of limit to prove the following.

(a)
$$\lim_{x \to 3} \frac{2x+3}{4x-9} = 3$$
, (b) $\lim_{x \to 6} \frac{x^2-3x}{x+3} = 2$.

12. Show that the following limits do not exist.

(a)
$$\lim_{x\to 0} \frac{1}{x^2}$$
 (x > 0),
(b) $\lim_{x\to 0} \frac{1}{\sqrt{x}}$ (x > 0),
(c) $\lim_{x\to 0} (x + \operatorname{sgn}(x))$,
(d) $\lim_{x\to 0} \sin(1/x^2)$.