MATH2050B tutorial 04

October 5, 2022

Abstract

The questions to work on are:

tutorial page: Q1 (on Archimedean properties)

3.2: 4/5/6/22

3.3: 1/2/3

3.4: 12/13/17/18/19

3.5: 1/2/3/12/13

Tutorial Page

- 1. Prove that the following are equivalent formulation of the Archimedean properties (fromulate them rigorously):
 - o One can find integer larger than a given real number.
 - o There is no upper bound to set of all natural numbers.
 - o One can find arbitrarily small reciprocal of natural numbers.
 - $\circ \ \ \text{If} \ a < b \text{, one can always find} \ N \ \text{such that} \ a + \tfrac{1}{N} < b.$
 - If 0 < a < b, one can find N such that Na > b.
 - ∘ If 1 < a < b, one can find N such that $a^N > b$.

Section 3.2

- 4. Show that if X and Y are sequences such that X converges to $x \neq 0$ and XY converges, then Y converges.
- 5. Show that the following sequences are not convergent.

(a)
$$(2^n)$$
,

(b)
$$((-1)^n n^2)$$
.

6. Find the limits of the following sequences:

(a)
$$\lim ((2+1/n)^2)$$
,

(b)
$$\lim \left(\frac{(-1)^n}{n+2}\right)$$
,

(c)
$$\lim \left(\frac{\sqrt{n}-1}{\sqrt{n}+1}\right)$$
,

(d)
$$\lim \left(\frac{n+1}{n\sqrt{n}}\right)$$
.

22. Suppose that (x_n) is a convergent sequence and (y_n) is such that for any $\varepsilon > 0$ there exists M such that $|x_n - y_n| < \varepsilon$ for all $n \ge M$. Does it follow that (y_n) is convergent?

Section 3.3

- 1. Let $x_1 := 8$ and $x_{n+1} := \frac{1}{2}x_n + 2$ for $n \in \mathbb{N}$. Show that (x_n) is bounded and monotone. Find the limit.
- 2. Let $x_1 > 1$ and $x_{n+1} := 2 1/x_n$ for $n \in \mathbb{N}$. show that (x_n) is bounded and monotone. Find the limit.
- 3. Let $x_1 \ge 2$ and $x_{n+1} := 1 + \sqrt{x_n 1}$ for $n \in \mathbb{N}$. Show that (x_n) is decreasing and bounded below by 2. Find the limit.

Section 3.4

- 12. Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $\lim(1/x_{n_k})=0.$
- 13. If $x_n := (-1)^n/n$, find the subsequence of (x_n) that is constructed in the second proof of the Bolzano-Weierstrass Theorem 3.4.8, when we take $I_1 := [-1, 1]$.
- 17. Alternate the terms of the sequences (1+1/n) and (-1/n) to obtain the sequence (x_n) given by

$$(2,-1, 3/2,-1/2, 4/3,-1/3, 5/4,-1/4,...)$$
.

Determine the values of $\limsup (x_n)$ and $\lim \inf (x_n)$. Also find $\sup \{x_n\}$ and $\inf \{x_n\}$.

- Show that if (x_n) is a bounded sequence, then (x_n) converges if and only if $\limsup (x_n) =$ $\lim \inf (x_n)$.
- 19. Show that if (x_n) and (y_n) are bounded sequences, then

$$\limsup (x_n + y_n) \le \limsup (x_n) + \limsup (y_n).$$

Give an example in which the two sides are not equal.

Section 3.5

- 1. Give an example of a bounded sequence that is not a Cauchy sequence.
- 2. Show directly from the definition that the following are Cauchy sequences.

(a)
$$\left(\frac{n+1}{n}\right)$$
,

(b)
$$\left(1+\frac{1}{2!}+\cdots+\frac{1}{n!}\right).$$

3. Show directly from the definition that the following are not Cauchy sequences.

(a)
$$\left(\left(-1\right) ^{n}\right)$$

(a)
$$((-1)^n)$$
, (b) $\left(n + \frac{(-1)^n}{n}\right)$, (c) $(\ln n)$

- 12. If $x_1 > 0$ and $x_{n+1} := (2 + x_n)^{-1}$ for $n \ge 1$, show that (x_n) is a contractive sequence. Find the
- 13. If $x_1 := 2$ and $x_{n+1} := 2 + 1/x_n$ for $n \ge 1$, show that (x_n) is a contractive sequence. What is its limit?