MATH2050B Tutorial 2

September 21, 2022

Abstract

This tutorial aims to provide exercise for familiarity with different new concepts in analysis. Exercises are

2.3.1/2/14, 2.4.1/2/11/12/16, 2.5.7/8/9, 3.1.12/16/17/18, 3.2.2/6/19.

Section 2.3

Exercise 1, 2, 14.

- 1. Let $S_1 := \{x \in \mathbb{R} : x \ge 0\}$. Show in detail that the set S_1 has lower bounds, but no upper bounds. Show that inf $S_1 = 0$.
- 2. Let $S_2 := \{x \in \mathbb{R} : x > 0\}$. Does S_2 have lower bounds? Does S_2 have upper bounds? Does inf S_2 exist? Does sup S_2 exist? Prove your statements.
- 14. Let S be a set that is bounded below. Prove that a lower bound w of S is the infimum of S if and only if for any $\varepsilon > 0$ there exists $t \in S$ such that $t < w + \varepsilon$.

Section 2.4

Exercise 1, 2, 11, 12, 16.

- 1. Show that $\sup\{1 1/n : n \in \mathbb{N}\} = 1$.
- 2. If $S := \{1/n 1/m : n, m \in \mathbb{N}\}$, find inf S and sup S.
- 11. Let X and Y be nonempty sets and let $h: X \times Y \to \mathbb{R}$ have bounded range in \mathbb{R} . Let $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$ be defined by

$$f(x) := \sup\{h(x, y) : y \in Y\}, \quad g(y) := \inf\{h(x, y) : x \in X\}.$$

Prove that

$$\sup\{g(y):y\in Y\}\leq\inf\{f(x):x\in X\}.$$

We sometimes express this by writing

$$\sup_{y} \inf_{x} h(x, y) \le \inf_{x} \sup_{y} h(x, y).$$

Note that Exercises 9 and 10 show that the inequality may be either an equality or a strict inequality.

12. Let X and Y be nonempty sets and let $h: X \times Y \to \mathbb{R}$ have bounded range in \mathbb{R} . Let $F: X \to \mathbb{R}$ and $G: Y \to \mathbb{R}$ be defined by

$$F(x) := \sup\{h(x, y) : y \in Y\}, \quad G(y) := \sup\{h(x, y) : x \in X\}.$$

Establish the Principle of the Iterated Suprema:

$$\sup\{h(x,y) : x \in X, y \in Y\} = \sup\{F(x) : x \in X\} = \sup\{G(y) : y \in Y\}$$

We sometimes express this in symbols by

$$\sup_{x,y} h(x,y) = \sup_{x} \sup_{y} h(x,y) = \sup_{y} \sup_{x} h(x,y).$$

16. Modify the argument in Theorem 2.4.7 to show that if a > 0, then there exists a positive real number z such that $z^2 = a$.

Section 2.5

Exercise 7, 8, 9.

- 7. Let $I_n := [0, 1/n]$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} I_n = \{0\}$. 8. Let $J_n := (0, 1/n)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} J_n = \emptyset$. 9. Let $K_n := (n, \infty)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} K_n = \emptyset$.

Section 3.1

Exercise 12, 16, 17, 18.

- 12. Show that $\lim(\sqrt{n^2 + 1} n) = 0$.
- 16. Show that $\lim_{n \to \infty} (n^2/n!) = 0$.
- 17. Show that $\lim_{n \to \infty} (2^n/n!) = 0$. [Hint: If $n \ge 3$, then $0 < 2^n/n! \le 2(\frac{2}{3})^{n-2}$.]
- 18. If $\lim_{n \to \infty} (x_n) = x > 0$, show that there exists a natural number K such that if $n \ge K$, then $\frac{1}{2}x < x_n < 2x$.

Section 3.2

Exercise 2, 6, 19.

- 2. Give an example of two divergent sequences X and Y such that:
 - (a) their sum X + Y converges,
- (b) their product XY converges.
- 3. Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent.
- 6. Find the limits of the following sequences:

(a)
$$\lim ((2+1/n)^2)$$
,

(b)
$$\lim \left(\frac{(-1)^n}{n+2}\right)$$
,
(d) $\lim \left(\frac{n+1}{n\sqrt{n}}\right)$.

(c)
$$\lim \left(\frac{\sqrt{n}-1}{\sqrt{n}+1}\right)$$
,

(d)
$$\lim \left(\frac{n+1}{n\sqrt{n}}\right)$$

- 19. Discuss the convergence of the following sequences, where a, b satisfy 0 < a < 1, b > 1.

(b) (b^n/n^2) ,

(c) $(b^n/n!)$,

(d) $(n!/n^n)$.