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We note that if we reverse the order, then the composition f o g is given by the formula

(fog)(x)=1-x,

but only for those x in the domain D(g) = {x : x > 0}. O

We now give the relationship between composite functions and inverse images. The
proof is left as an instructive exercise.

1.1.14 Theorem Letf:A — B and g:B — C be functions and let H be a subset of C.
Then we have

(gof) ' (H)=F"" (g7 (H)).

Note the reversal in the order of the functions.

Restrictions of Functions

If f:A — B is a function and if A; C A, we can define a function f;: A; — B by
fi1(x) == f(x) for xeA;.

The function f; is called the restriction of f to A;. Sometimes it is denoted by f, = f|A;.

It may seem strange to the reader that one would ever choose to throw away a part of a
function, but there are some good reasons for doing so. For example, if f : R — R is the
squaring function:

f(x) == x? for xeR,

then f'is not injective, so it cannot have an inverse function. However, if we restrict f to the set
A; := {x: x > 0}, then the restriction f|A, is a bijection of A; onto A,. Therefore, this
restriction has an inverse function, which is the positive square root function. (Sketch a
graph.)

Similarly, the trigonometric functions S(x ) := sin x and C(x) := cos x are not injective on
all of R. However, by making suitable restrictions of these functions, one can obtain the inverse
sine and the inverse cosine functions that the reader has undoubtedly already encountered.

Exercises for Section 1.1

I. LetA:={k:keNk<20},B:={3k—1:ke€N},andC := {2k +1: k € N}.
Determine the sets:
(a) ANBNC,
(b) (ANB)\C,
() (ANC)\B.

2. Draw diagrams to simplify and identity the following sets:

(@) A\(B\A),

(b) A\(4\B),

() AN(B\A).

If A and B are sets, show that A C B if and only if A N B = A.
4. Prove the second De Morgan Law [Theorem 1.1.4(b)].

Prove the Distributive Laws:
@ ANBUC)=(ANB)UANC),
(b) AUBNC)=AUB)NAUC).
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The symmetric difference of two sets A and B is the set D of all elements that belong to either A

or B but not both. Represent D with a diagram.

(a) Show that D = (A\B) U (B\A).

(b) Show that D is also given by D = (A U B)\(A N B).

Foreachn e N, let A, = {(n+ 1)k : k € N}.

(@) What is A; NA?

(b) Determine the sets U{A, : n € N} and N{A, : n € N}.

Draw diagrams in the plane of the Cartesian products A x B for the given sets A and B.

(@ A={xeR:1<x<20r3<x<4},B={xcR: x=1lorx=2}.

b)) A={1,2,3},B={xecR:1<x<3}L

LetA:=B:= {x € R : =1 < x < 1} and consider the subset C := {(x, y) : x> + y?> = 1} of

A x B. Is this set a function? Explain.

Let f(x) == 1/x%, x #0, x € R.

(a) Determine the direct image f(E) where E:= {x e R : 1 <x < 2}.

(b) Determine the inverse image f~'(G) where G := {x € R : 1 < x <4}.

Let g(x) := x* and f(x) := x + 2 for x € R, and let 4 be the composite function 4 := g o f.

(a) Find the direct image A(E) of E:={x € R : 0 < x < 1}.

(b) Find the inverse image /" '(G) of G:= {x € R : 0 < x < 4}.

Letf(x):=x*forx c R,andlet E:= {x c R : =1 < x<0}and F:={xeR : 0< x < 1}.

Show that ENF = {0} and f(ENF) = {0}, while f(E)=f(F)={yeR : 0<y<1}.

Hence f( EN F) is a proper subset of f(E) N f(F). What happens if O is deleted from the sets E

and F?

Let fand E, F be as in Exercise 12. Find the sets E\F and f(E)\ f(f) and show that it is not true

that £( E\F) C f(E)\f(F).

Show that if f: A — B and E, F are subsets of A, then f(EUF)=f(E)Uf(F) and

F(ENF) CF(E) Nf(F).

Show that if f: A — B and G, H are subsets of B, then f "' (GUH) = f ~!(G) Uf ~!(H) and

fHGnH) =f~1(G)nf (H).

Show that the function f defined by f(x) := x/vx?+ 1, x € R, is a bijection of R onto

{y:—-1<y<1}

For a, b € R with a < b, find an explicit bijection of A:={x:a < x < b} onto

B:={y:0<y<1}.

(a) Give an example of two functions f, g on R to R such that f # g, but such that fog =g o f.

(b) Give an example of three functions f, g, # on R such that fo(g+ /) #fog+foh.

(a) Show thatif f: A — B isinjective and E C A, then f ~!(f(E)) = E. Give an example to
show that equality need not hold if f is not injective.

(b) Show thatif f: A — B is surjective and H C B, then f ( f! (H )) = H. Give an example to
show that equality need not hold if f is not surjective.

(a) Suppose that fis aninjection. Show thatf ' o f(x) = x forall x € D(f) and that fo f ~ =y

for all y € R(f).
(b) If fis a bijection of A onto B, show that f~! is a bijection of B onto A.

Prove that if f: A — B is bijective and g : B — C is bijective, then the composite g o f is a
bijective map of A onto C.

Letf: A — Band g: B — C be functions.
(a) Show that if g o fis injective, then f is injective.
(b) Show that if g o fis surjective, then g is surjective.

Prove Theorem 1.1.14.

Let f, g be functions such that (g o f)(x) = x for all x € D(f) and (fo g)(y) =yforally € D (g).
Prove that g = f ~.
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[This result can also be proved without using Mathematical Induction. If we let
Sp=14r+rr+--- 41 thenrs,=r+r*+---+ "l so that

(1 =r)sy =8y —rsp =1 —r"1

If we divide by 1 — r, we obtain the stated formula.]

(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd
conclusions. The reader is invited to find the error in the “proof”” of the following assertion.

Claim: If n € N and if the maximum of the natural numbers p and ¢ is #, then p = q.

““Proof.”” Let S be the subset of N for which the claim is true. Evidently, 1 € § since if
2, q € Nand their maximum is 1, then both equal 1 and so p = g. Now assume that k € S and
that the maximum of p and g is k + 1. Then the maximum of p — 1 and g — 1 is k. But since
k € S,thenp — 1 =g — 1 and therefore p = q. Thus, £ + 1 € §, and we conclude that the
assertion is true for all n € N.

(h) There are statements that are true for many natural numbers but that are not true for
all of them.

For example, the formula p (n) :=n“ — n+ 41 givesa prime number forn=1,2, .. .,

40. However, p(41) is obviously divisible by 41, so it is not a prime number.

2

Another version of the Principle of Mathematical Induction is sometimes quite useful.
It is called the “Principle of Strong Induction,” even though it is in fact equivalent to 1.2.2.

1.2.5 Principle of Strong Induction Let S be a subset of N such that

a”n 1es.
") Foreveryk e N, if{1,2, ..., k} C S, thenk+1€S.
Then S = N.

We will leave it to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exercises for Section 1.2

fam—

Prove that 1/1-2+1/2-3+---+1/n(n+1)=n/(n+ 1) for all n € N.
Prove that 1° +2* +---+n* = [In(n + 1)]2 for all n € N.

Prove that 3+ 11+ .-+ (81 —5) =4n* —nforall n € N,

Prove that 12 +3%4--- + (2n — 1) = (4n> — n)/3 for all n € N.

Prove that 12 — 22 + 32 4+ ... 4+ (—=1)"'n2 = (=1)""'n(n 4+ 1)/2 for all n € N.
Prove that n® + 5n is divisible by 6 for all n € N.

Prove that 5% — 1 is divisible by 8 for all n € N.

Prove that 5" — 4n — 1 is divisible by 16 for all n € N.

Prove that n® + (n + 1) + (n + 2)? is divisible by 9 for all n € N.

e B T

Pk
e

Conjecture a-formula for thesum 1/1-3+1/3-5+--- 4+ 1/(2n — 1)(2n + 1), and prove your
conjecture by using Mathematical Induction.

[u—y
[e—

Conjecture a formula for the sum of the first # odd natural numbers 1 4+ 3 + --- + (27 — 1), and
prove your formula by using Mathematical Induction.

p—
L

Prove the Principle of Mathematical Induction 1.2.3 (second version).
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13. Prove that n < 2" for all n € N.

14. Prove that 2" < n! foralln > 4, n € N.

15. Prove that 2n —3 < 2" %2 foralln > 5, n € N.

16. Find all natural numbers n such that n* < 2". Prove your assertion.

17. Find the largest natural number m such that n® — n is divisible by m for all n € N. Prove your
assertion.

18. Prove that 1/v1+1/vV2+---+1/y/n>/nforalneN,n > I.
19. Let S be a subset of N such that (a) 2% € S for all k € N, and (b) if k € S and k > 2, then
k — 1 € S. Prove that S = N.

20. Let the numbers x, be defined as follows: x| ;= 1, x5 := 2, and x,,,, := %(xn, 1 + x,,) for all
n € N. Use the Principle of Strong Induction (1.2.5) to show that 1 < x, < 2 for all n € N.

Section 1.3 Finite and Infinite Sets

When we count the elements in a set, we say ‘“‘one, two, three, . . . ,” stopping when we
have exhausted the set. From a mathematical perspective, what we are doing is defining a
bijective mapping between the set and a portion of the set of natural numbers. If the set is
such that the counting does not terminate, such as the set of natural numbers itself, then we
describe the set as being infinite.

The notions of “finite” and ““infinite” are extremely primitive, and it is very likely that
the reader has never examined these notions very carefully. In this section we will define
these terms precisely and establish a few basic results and state some other important
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in
Appendix B and can be read later.

1.3.1 Definition (a) The empty set () is said to have O elements.

(b) If n € N, a set S is said to have n elements if there exists a bijection from the set
N, :={l, 2,..., n} onto S.

(c) A set S is said to be finite if it is either empty or it has n elements for some n € N.

(d) A set S is said to be infinite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n
elements if and only if there is a bijection from S onto the set {1, 2, ..., n}. Also,
since the composition of two bijections is a bijection, we see that a set S| has n
elements if and only if there is a bijection from S, onto another set S, that has n
elements. Further, a set 7 is finite if and only if there is a bijection {from 7', onto
another set 7, that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the
definitions do not lead to conclusions that conflict with our experience of counting. From
the definitions, it is not entirely clear that a finite set might not have n elements for more
than one value of n. Also it is conceivably possible that the set N := {1, 2, 3,...} might be
a finite set according to this definition. The reader will be relieved that these possibilities do
not occur, as the next two theorems state. The proofs of these assertions, which use the
fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a
unique number in N.
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Exercises for Section 1.3

w

NS »n oA

10.

1.

12.
13.

Prove that a nonempty set 77 is finite if and only if there is a bijection from T onto a finite set 75.
Prove parts (b) and (c) of Theorem 1.3.4.

Let S:={1,2} and T := {a, b, c}.
(a) Determine the number of different injections from S into 7.
(b) Determine the number of different surjections from 7 onto S.

Exhibit a bijection between N and the set of all odd integers greater than 13.
Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b).
Exhibit a bijection between N and a proper subset of itself.

Prove that a set T is denumerable if and only if there is a bijection from T onto a denumerable
set 7.

Give an example of a countable collection of finite sets whose union is not finite.
Prove in detail that if S and T are denumerable, then SU T is denumerable.

(a) If (m, n) is the 6th point down the 9th diagonal of the array in Figure 1.3.1, calculate its
number according to the counting method given for Theorem 1.3.8.

(b) Given that A(m, 3) = 19, find m.

Determine the number of elements in P(S), the collection of all subsets of S, for each of the

following sets:

@) S:=1{1,2},

(b) S:=1{1, 2,3},

(c) S:=1{1,2,3,4}.

Be sure to include the empty set and the set S itself in P(S).

Use Mathematical Induction to prove that if the set S has n elements, then P(S) has 2" elements.

Prove that the collection F(N) of all finite subsets of N is countable.
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Therefore (2) holds (with strict inequality) when a # b. Moreover, if a = b(> 0), then both
sides of (2) equal a, so (2) becomes an equality. This proves that (2) holds fora > 0,5 > 0.

On the other hand, suppose that a > 0, b > 0 and that vab = %(a + b). Then,
squaring both sides and multiplying by 4, we obtain

4ab = (a+ b)* = & + 2ab + b?,
whence it follows that
0=d? —2ab+b* = (a—b)*,
But this equality implies that @ = b. (Why?) Thus, equality in (2) implies that a = b.

Remark The general Arithmetic-Geometric Mean Inequality for the positive real
numbers ay,a;,...,a, is
|/n<al+az+---+an

o n

(3) (a1ay---ap)

with equality occurring if and only if a; = a4y = - -+ = a,,. It is possible to prove this more
general statement using Mathematical Induction, but the proof is somewhat intricate. A more
elegant proof that uses properties of the exponential function is indicated in Exercise 8.3.9 in
Chapter 8.

(c) Bernoulli’s Inequality. If x > —1, then

(4) (I4+x)">1+4+nx  forall neN

The proof uses Mathematical Induction. The case n = 1 yields equality, so the assertion
is valid in this case. Next, we assume the validity of the inequality (4) for k € N and will
deduce it for k + 1. Indeed, the assumptions that (1 + x)k >1+kxandthat 1 + x>0
imply (why?) that

14+ = 1+ (1+x)

> (1+kx) - (1+x)=1+ (k+1)x+kx?
> 1+ (k+1)x.
Thus, inequality (4) holds for n = k + 1. Therefore, (4) holds for all n € N. O

Exercises for Section 2.1

1. If a,b € R, prove the following.
(@ Ifa+b=0,then b = —a, (b) —(—a)=a,
© (-a=—a, d (-1)(-1)=1.

2. Prove that if a¢,b € R, then

@ —(a+b)=(-a)+(=b), () (-a)-(=b)=a-b,
© 1/(=a) = =(1/a), d) —(a/b) = (—a)/bif b#0.
3. Solve the following equations, justifying each step by referring to an appropriate property or
theorem.
(a) 2x+5=8, (b) x* =2x,

c) x*—1=3, d (x-1)(x+2)=0.
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If a € R satisfies a - ¢ = a, prove that either a =0 or a = 1.

If a # 0 and b # 0, show that 1/(ab) = (1/a)(1/b).

Use the argument in the proof of Theorem 2.1.4 to show that there does not exist a rational
number s such that s> = 6.

I\;[odify the proof of Theorem 2.1.4 to show that there does not exist a rational number ¢ such that
- =3.

(a) Show that if x, y are rational numbers, then x + y and xy are rational numbers.
(b) Prove that if x is a rational number and y is an irrational number, then x + y is an irrational
number. If, in addition, x # 0, then show that xy is an irrational number.

Let K := {.s- +1V/2:s,t€ Q}. Show that K satisfies the following:

(@) If x1,x; €K, then x; +x, € K and x;x; € K.

(b) If x# 0and x € K, then 1/x € K.

(Thus the set K is a subfield of R. With the order inherited from R, the set K is an ordered field
that lies between Q and R.)

(@) Ifa<band ¢<d, provethata+c¢<b+d.
(b) If0<a<band0<c<d,prove that 0 < ac < bd.

(a) Show that if a > 0, then 1/a >0 and 1/(1/a) = a.
(b) Show that if a < b, then a <1(a+b) < b.

Leta, b, ¢, d be numbers satisfying 0 < a < band ¢ < d < 0. Give an example where ac < bd,
and one where bd < ac.

If a,b € R, show that a> + »*> = 0 if and only if « = 0 and b = 0.

If 0<a<b, show that ¢* < ab < b*. Show by example that it does not follow that
a* < ab < b*.

If 0 < a < b, show that (a) a < vab < b, and (b) 1/b < 1/a.

Find all real numbers x that satisfy the following inequalities.
(@) x*>3x+4, (b) 1<x?<4,
() 1/x<x, d) 1/x< x%.

Prove the following form of Theorem 2.1.9: If ¢ € Ris such that 0 < a < ¢ forevery ¢ > 0, then
a=0.
Let a,b € R, and suppose that for every ¢ > () we have a < b + ¢. Show that a < b.

Prove that [ (a + b)]2 <1(a®+b?) for all a,b € R. Show that equality holds if and only if
a=h.

(@) fO<c<l,showthat 0 < c? <c< 1.
(b) If I <c¢, show that 1 < ¢ < ¢

(a) Prove there is no n € N such that 0 < n < 1. (Use the Well-Ordering Property of N.)
(b) Prove that no natural number can be both even and odd.

(@) If ¢ > 1, show that ¢" > ¢ for all n € N, and that ¢" > ¢ for n > 1.
(b) If0<c¢< 1, show that ¢" < ¢ for all n € N, and that ¢" < ¢ forn > 1.

If a>0,b>0,and n € N, show that a < b if and only if ¢" < b". |Hint: Use Mathematical
Induction.]

(a) If ¢ > 1 and m,n € N, show that ¢ > ¢" if and only if m > n.
(b) If0<c< 1 and m,ne€ N, show that ¢ < ¢" if and only if m > n.

Assuming the existence of roots, show that if ¢ > 1, then ¢!/” < ¢'/" if and only if m > n.

Use Mathematical Induction to show that if a € R and m,n € N, then """ = a"q" and
(@) = a™.
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Later we will need precise language to discuss the notion of one real number being
“close to’” another. If a is a given real number, then saying that a real number x is “close
to”” ashould mean that the distance |x — a| between them is ‘“‘small.”” A context in which
this idea can be discussed is provided by the terminology of neighborhoods, which we
now define.

2.2.7 Definition Let a € R and ¢ > 0. Then the e¢-neighborhood of a is the set
V(@) ={xeR:|x—a| <e}.

For a € R, the statement that x belongs to V,(a) is equivalent to either of the
statements (see Figure 2.2.4)
—e<x—a<e <= a—-e<x<a-+ec.

L O ) .

L g O 3} >
a—E¢E a a+¢

Figure 2.24 An ¢-neighborhood of a

2.2.8 Theorem Leta € R. If x belongs to the neighborhood V .(a) for every ¢ > 0, then
X =a.

Proof. 1If aparticular x satisfies |[x — a| < ¢ for every ¢ > 0, then it follows from 2.1.9 that
|x — a| =0, and hence x = a. QE.D.

2.2.9 Examples (a) LetU := {x:0 < x < 1}.Ifa € U, then let ¢ be the smaller of the
two numbers a and 1 — a. Then it is an exercise to show that V,(a) is contained in U. Thus
each element of U has some ¢-neighborhood of it contained in U.

(b) IfI:={x:0 < x <1}, then for any ¢ > 0, the e-neighborhood V,(0) of O contains
points not in 7, and so V,(0) is not contained in /. For example, the number x,, := —¢/2 is in
V.(0) but not in 1.

(¢) If |[x —a| < ¢and |y —b| < ¢, then the Triangle Inequality implies that

(x —a)+ (v - b)|

[(x+y) —(a+b)] = |
< |x—a|l+|y—b| <2

Thus if x, y belong to the e-neighborhoods of a, b, respectively, then x + y belongs to the
2¢-neighborhood of a + b (but not necessarily to the e-neighborhood of a + b). U

Exercises for Section 2.2

1. If a,b € R and b # 0, show that:
(@) |a| = Va2, () |a/b| = |a|/|b|.

2. If a,b € R, show that |a + b| = |a| + || if and only if ab > 0.

3. Ifx,y,z€ Rand x < z,showthat x < y < zifand only if |x — y| + |y — z| = |x — z|. Interpret
this geometrically.
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4. Show that [x —a| <c¢ifandonly ifa—c <x<a+e.
If a<x<banda<y<b, show that |x — y| < b — a. Interpret this geometrically.

6. Find all x € R that satisfy the following inequalities:
(a) [4x—5| <13, (b) |x*-1<3.

7. Find all x € R that satisfy the equation |x + 1|+ |x — 2| =7.
. Find all values of x that satisfy the following equations:
(@ x+1=2x-1|, (b) 2x—1=|x-15|
9. Find all values of x that satisfy the following inequalities. Sketch graphs.
(@ |x-2|<x+1, (b) 3|x]<2-—x
10. Find all x € R that satisfy the following inequalities.
@ |x—1]>x+1], (b) x|+ x+1] <2
11. Sketch the graph of the equation y = |x| — |x — 1|.
12. Find all x € R that satisfy the inequality 4 < |x + 2|+ [x — 1| < 5.
13. Find all x € R that satisfy both |2x — 3} < 5 and |x + 1| > 2 simultaneously.
14. Determine and sketch the set of pairs (x,y) in R x R that satisfy:

@ |x[=1yl, ®) x|+ Iyl =1,
©) |xyl =2, @ x| Iyl =2
15. Determine and sketch the set of pairs (x, y) in R x R that satisfy:
@ x| <yl () |x| + [yl <1,
© |xyl <2, @ |x[-blz2

16. Lete > 0and & > 0, and a € R. Show that V,(a) N Vs(a) and V.(a) U V;(a) are y-neighbor-
hoods of « for appropriate values of y.

17. Show that if ¢, b € R, and a # b, then there exist ¢-neighborhoods U of a and V of b such that
unv=_0.

18. Show that if a,b € R then
(a) max{a,b} =1(a+b+]a—b|) and min{a,b} =} (a+b—|a—b|).
(b) min{a,b,c} = min{min{a, b}, c}.

19. Show that if a,b,c¢ € R, then the “middle number” is mid{a,b,c} = min{max{a,b},
max{b, ¢}, max{c,a}}.

Section 2.3 The Completeness Property of R

Thus far, we have discussed the algebraic properties and the order properties of the real number
system R. In this section we shall present one more property of R that is often called the
“Completeness Property.” The system Q of rational numbers also has the algebraic and order
properties described in the preceding sections, but we have seen that v/2 cannot be represented
as a rational number; therefore v/2 does not belong to Q. This observation shows the necessity
of an additional property to characterize the real number system. This additional property, the
Completeness (or the Supremum) Property, is an essential property of R, and we will say that R
is a complete ordered field. 1t is this special property that permits us to define and develop the
various limiting procedures that will be discussed in the chapters that follow.

There are several different ways to describe the Completeness Property. We choose to
give what is probably the most efficient approach by assuming that each nonempty
bounded subset of R has a supremum.
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i/

Figure 232 wu=supS$

2.3.5 Examples (a) If a nonempty set S| has a finite number of elements, then it can be
shown that S, has a largest element » and a least element w. Then u = sup S, and w =inf S|,
and they are both members of S;. (This is clear if S; has only one element, and it can be
proved by induction on the number of elements in S,; see Exercises 12 and 13.)

(b) ThesetS, := {x:0 < x < 1} clearly has 1 for an upper bound. We prove that 1 is its
supremum as follows. If v < 1, there exists an element s’ € S, such that v < s’. (Name one
such element s".) Therefore v is not an upper bound of S, and, since v is an arbitrary number
v < 1, we conclude that sup S, = I. It is similarly shown that inf S, = 0. Note that both the
supremum and the infimum of S, are contained in S,.

(c) The set §3 := {x:0 < x < 1} clearly has 1 for an upper bound. Using the same
argument as given in (b), we see that sup S3 = 1. In this case, the set S; does nof contain its
supremum. Similarly, inf S3 = 0 is not contained in S5 0O

The Completeness Property of R

It is not possible to prove on the basis of the field and order properties of R that were
discussed in Section 2.1 that every nonempty subset of R that is bounded above has a
supremum in R. However, it is a deep and fundamental property of the real number system
that this is indeed the case. We will make frequent and essential use of this property,
especially in our discussion of limiting processes. The following statement concerning the
existence of suprema is our final assumption about R. Thus, we say that R is a complete
ordered field.

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has
an upper bound also has a supremum in R.

This property is also called the Supremum Property of R. The analogous property for
infima can be deduced from the Completeness Property as follows. Suppose that S is a
nonempty subset of R that is bounded below. Then the nonempty set § := {—s : s € S} is
bounded above, and the Supremum Property implies that u := sup S exists in R. The reader
should verify in detail that —u is the infimum of S.

Exercises for Section 2.3

1. Let §;:={x € R:x>0}. Show in detail that the set S; has lower bounds, but no upper
bounds. Show that inf S| = 0.

2. Let S, :={x € R:x>0}. Does S, have lower bounds? Does S, have upper bounds? Does
inf S, exist? Does sup S, exist? Prove your statements.

3. Let S3={1/n:ne N). Show that sup S3 = | and inf S5 > 0. (It will follow from the
Archimedean Property in Section 2.4 that inf S; = 0.)

4. Let 84 :={1—(—1)"/n: n € N}. Find inf S, and sup S,.



40 CHAPTER 2 THE REAL NUMBERS

5. Find the infimum and supremum, if they exist, of each of the following sets.
(@ A:={xeR:2x+5>0} (b) B:={xeR: x+2>x%},
() C:={xeR:x<1/x}, (d) D::{xeR:x2—2x—5<0}.

6. Let S be a nonempty subset of R that is bounded below. Prove that inf S = —sup{—s : s € S}.
If aset S C R contains one of its upper bounds, show that this upper bound is the supremum of S.

8. Let S C R be nonempty. Show that # € R is an upper bound of S if and only if the conditions
t € Rand ¢t > u imply that ¢ ¢ S.

9. Let S C R be nonempty. Show that if # = sup S, then for every number #n € N the number
u — 1/n is not an upper bound of S, but the number u + 1/7 is an upper bound of S. (The
converse is also true; see Exercise 2.4.3.)

10. Show that if A and B are bounded subsets of R, then AU B is a bounded set. Show that
sup(A U B) = sup{supA, sup B}.

11. Let S be a bounded set in R and let S, be a nonempty subset of S. Show that
inf § <inf Sy < sup So < supS.

12 Let SCR and suppose that s*:=supS belongs to S. If u¢ S, show that
sup(SU {u}) = sup{s*,u}.

13. Show that a nonempty finite set S C R contains its supremum. [Hint: Use Mathematical
Induction and the preceding exercise.]

14. Let S be a set that is bounded below. Prove that a lower bound w of S is the infimum of S if and
only if for any ¢ > O there exists ¢ € S such that t < w + ¢.

Section 2.4 Applications of the Supremum Property

We will now discuss how to work with suprema and infima. We will also give some very
important applications of these concepts to derive fundamental properties of R. We begin
with examples that illustrate useful techniques in applying the ideas of supremum and
infimum.

2.4.1 Examples (a) It is an important fact that taking suprema and infima of sets is
compatible with the algebraic properties of R. As an example, we present here the
compatibility of taking suprema and addition.

Let S be a nonempty subset of R that is bounded above, and let a be any number in R.
Define the set a + S := {a+s: s € §}. We will prove that

sup(a+S) =a+supS.

If we let u := sup S, then x < ufor all x € S, so that a + x < a + u. Therefore, a + u
is an upper bound for the set a + S ; consequently, we have sup(a + S) < a + u.

Now if v is any upper bound of the set a+ S, then a+ x < v for all x € §.
Consequently x < v —a for all x € S, so that v — a is an upper bound of S. Therefore,
u =sup S < v — a, which gives us a + u < v. Since v is any upper bound of a + S, we can
replace v by sup(a + S) to get a + u < sup(a + S).

Combining these inequalities, we conclude that

sup(a+S) =a+u=a+supS.

For similar relationships between the suprema and infima of sets and the operations of
addition and multiplication, see the exercises.
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theorem can be formulated to establish the existence of a unique positive nth root of a,
denoted by (/a or a'/", for each n € N.

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational
numbers T := {r € Q: 0 < r, r* < 2}, the argument then gives the conclusion that y :=
sup T satisfies y> = 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational
number, it follows that the set 7 that consists of rational numbers does not have a supremum
belonging to the set Q. Thus the ordered field Q of rational numbers does not possess the
Completeness Property.

Density of Rational Numbers in R

We now know that there exists at least one irrational real number, namely V2. Actually there
are “more”’ irrational numbers than rational numbers in the sense that the set of rational
numbers is countable (as shown in Section 1.3), while the set of irrational numbers is
uncountable (see Section 2.5). However, we next show that in spite of this apparent disparity,
the set of rational numbers is “‘dense” in R in the sense that given any two real numbers there
is a rational number between them (in fact, there are infinitely many such rational numbers).

2.4.8 The Density Theorem If x and y are any real numbers with x < y, then there
exists a rational number r € Q such that x <r <y.

Proof. ltis no loss of generality (why?) to assume that x > 0. Since y — x > 0, it follows
from Corollary 2.4.5 that there exists n € N such that 1/n < y — x. Therefore, we have
nx+1<ny. If we apply Corollary 2.4.6 to nx >0, we obtain m € N with
m — 1 < nx < m. Therefore, m < nx 4+ 1 < ny, whence nx < m < ny. Thus, the rational
number r := m/n satisfies x < r < y. QED.

To round out the discussion of the interlacing of rational and irrational numbers, we
have the same “betweenness property” for the set of irrational numbers.

2.4.9 Corollary If x and y are real numbers with x < y, then there exists an irrational
number z such that x < z < y.

Proof. If we apply the Density Theorem 2.4.8 to the real numbers x/v/2 and y/v/2, we
obtain a rational number r # 0 (why?) such that

X
—<r<—=.
V2 V2

Then z := r/2 is irrational (why?) and satisfies x < z < y. Q.E.D.

Exercises for Section 2.4

1. Show that sup{l1 — I/n:ne N} =1.
2. fS:={1/n—1/m:n,mec N}, find inf S and sup S.

3. LetS C R be nonempty. Prove that if a number u in R has the properties: (i) for every n € N the
number u — 1/nis not an upper bound of S, and (ii) for every number n € N the number u + 1/n
is an upper bound of S, then u = sup S. (This is the converse of Exercise 2.3.9.)
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Let S be a nonempty bounded set in R.
(a) Leta >0, and let aS:= {as : s € S}. Prove that

inf(aS) = ainf S, sup(aS) =asupS.
(b) Let b <0 and let bS = {bs : s € S}. Prove that

inf(bS) = bsup S, sup(bS) =binfS.

Let S be a set of nonnegative real numbers that is bounded above and let T := {x? : x € S}.
Prove that if u = sup S, then #?> = sup T. Give an example that shows the conclusion may be
false if the restriction against negative numbers is removed.

Let X be a nonempty set and let f : X — R have bounded range in R. If a € R, show that
Example 2.4.1(a) implies that

sup{a +f(x): x € X} = a +sup{f(x): x € X}.
Show that we also have
inf{a+f(x): x € X} = a+inf{f(x): x € X}.
Let A and B be bounded nonempty subsets of R, andletA + B := {a+ b :a € A, b € B}. Prove
that sup(A + B) = sup A + sup B and inf(A + B) = inf A + inf B.
Let X be a nonempty set, and let fand g be defined on X and have bounded ranges in R. Show that

sup{f(x) + g(x): x € X} < sup{f(x): x € X} + sup{g(x) : x € X}

and that
inf{f(x): x € X} +inf{g(x) : x € X} <inf{f(x) + g(x) : x € X}.

Give examples to show that each of these inequalities can be either equalities or strict
inequalities.

Let X=Y:={xe€R:0< x< 1}. Define h: X x Y — R by h(x,y) :=2x + y.

(a) For each x € X, find f(x) := sup{h(x,y) : y € Y}; then find inf{f(x) : x € X}.

(b) Foreachye Y, find g(y) := inf{h(x,y) : x € X}; then find sup{g(y) : y € Y'}. Compare
with the result found in part (a).

Perform the computations in (a) and (b) of the preceding exercise for the functions : X x ¥ — R
defined by

_JO ifx<y,
h(x’y)'_{l if x > .

Let X and Y be nonempty sets and let 2 : X x ¥ — R have bounded range in R. Letf : X — R
and g : Y — R be defined by

f(x) :=sup{h(x,y) :y € Y}, g(y):=inf{h(x,y): x € X}.

Prove that

sup{g(y) : y € Y} < inf{f(x) : x € X}.

We sometimes express this by writing
sup inf A(x,y) <inf suph(x,y).
y % Xy

Note that Exercises 9 and 10 show that the inequality may be either an equality or a strict
inequality.
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12. Let X and Y be nonempty sets and let 42 : X x ¥ — R have bounded range in R. Let F : X —» R
and G : Y — R be defined by

F(x) :=sup{h(x,y):y €Y}, G(y) :=sup{h(x,y): x € X}.
Establish the Principle of the Iterated Suprema:
sup{h(x,y) :x € X,y € Y} =sup{F(x) : x € X} =sup{G(y) : y € Y}
We sometimes express this in symbols by

sup h(x,y) = supsuph(x,y) = sup sup i(x,y).

Xy x oy y x
13. Given any x € R, show that there exists a unigue n € Z such that n — 1 < x < n.
14. If y > 0, show that there exists #n € N such that 1/2" < y.

15. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such
that y? = 3.

16. Modify the argument in Theorem 2.4.7 to show that if @ > 0, then there exists a positive real
number z such that z2 = a.

17. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number u such
that «* = 2.

18. Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > 0.

19. If u > 0 is any real number and x < y, show that there exists a rational number r such that
x < ru < y. (Hence the set {ru: r € Q} is dense in R.)

Section 2.5 Intervals

The Order Relation on R determines a natural collection of subsets called ‘““‘intervals.”
The notations and terminology for these special sets will be familiar from earlier
courses. If a,b € R satisfy a < b, then the open interval determined by a and b is
the set

(a,b) :={xeR:a<x<b}.

The points a and b are called the endpoints of the interval; however, the endpoints are not
included in an open interval. If both endpoints are adjoined to this open interval, then we
obtain the closed interval determined by a and b; namely, the set

[a,b] :={x € R:a < x<b}.

The two half-open (or half-closed) intervals determined by a and b are [a, b), which
includes the endpoint a, and (a, b], which includes the endpoint b.

Each of these four intervals is bounded and has length defined by b — a. If a = b, the
corresponding open interval is the empty set (a,a) = (), whereas the corresponding closed
interval is the singleton set [a,a] = {a}.

There are five types of unbounded intervals for which the symbols co(or 4+ 00) and —oco
are used as notational convenience in place of the endpoints. The infinite open intervals are
the sets of the form

(a,00) :={xe€R:x>a} and (—o00,b):={xeR:x<b}.
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obtaining 10x = 73.1414 - - -. We now multiply by a power of 10 to move one block to the
left of the decimal point; here getting 1000x = 7314.1414 - - .. We now subtract to obtain
an integer; here getting 1000x — 10x = 7314 — 73 = 7241, whence x = 7241/990, a
rational number.

Cantor’s Second Proof

We will now give Cantor’s second proof of the uncountability of R. This is the elegant
“diagonal” argument based on decimal representations of real numbers.

2.5.5 Theorem The unit interval [0,1] := {x € R: 0 < x < 1} is not countable.

Proof. The proof is by contradiction. We will use the fact that every real number x € [0, 1]
has a decimal representation x = 0.b1byb3 - - -, where b; = 0, 1, ..., 9. Suppose that there is
an enumeration X, X, x3 - - - of all numbers in [0,1], which we display as:

x1 = 0.bybizbiz-- by,

Xy = 0.ba1bybys---byy---,
x3 = 0.b31b3b33-- b3, - -,

Xn = O-bnlbrIZbrIB - 'bnn te

We now define a real number y := 0.y,y,y3---y, - - by setting y, := 2 if b;; > 5 and
y; := 7 if by; < 4; in general, we let

(2 ifby >S5,
I =317 ifb,, < 4.

Then y € [0, 1]. Note that the number y is not equal to any of the numbers with two decimal
representations, since y, # 0,9 for all n € N. Further, since y and x,, differ in the nth
decimal place, then y # x, for any n € N. Therefore, y is not included in the enumeration of
[0,1], contradicting the hypothesis. Q.E.D.

Exercises for Section 2.5

1. IfI:=[a,bland I' := [d, ] are closed intervals in R, show that I C I’ if and only if @ < a and
h<b.

2. If S C Ris nonempty, show that S is bounded if and only if there exists a closed bounded interval
I such that S C I.

3. IfS C Ris a nonempty bounded set, and I := [inf S, sup S], show that S C Is. Moreover, if J is
any closed bounded interval containing S, show that Iy C J.

4. 1In the proof of Case (ii) of Theorem 2.5.1, explain why x, y exist in S.
Write out the details of the proof of Case (iv) in Theorem 2.5.1.

6. If Iy, DI, D--- D1, D is a nested sequence of intervals and if I, = [a,, b,], show that
g <ay<--<a<---and b >by>-->b, >

7. Let I, :=10,1/n] for n € N. Prove that ";2,I, = {0}.
Let J, := (0, 1/n) for n € N. Prove that "2 ,J, =0.
9. Let K, := (n,00) for n € N. Prove that ", ,K, =0.
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With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have n € (52, /,.

Also show that [§, 7] = N1,

Show that the intervals obtained from the inequalities in (2) form a nested sequence.

Give the two binary representations of % and %.

(a) Give the first four digits in the binary representation of %
(b) Give the complete binary representation of %

Show that if ay,bx € {0,1,...,9} and if

SO T S
10 * 10? 10" 10 107

thenn=mand g, = b, fork=1,... ,n

bim

I()_m?éo)

Find the decimal representation of — %

l l . . .
Express 5 and {5 as periodic decimals.

What rationals are represented by the periodic decimals 1.25137---

35.14653---653 -7

137--- and
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If ¢ > 1, then ¢'/” = 1 + d, for some d,, > 0. Hence by Bernoulli’s Inequality 2.1.13(c),
c=01+d,)">1+nd, for neN.

Therefore we have ¢ — 1 > nd,, so that d, < (¢ — 1)/n. Consequently we have

/" —1)=d, < (¢c—1)- for neN.

S |=

We now invoke Theorem 3.1.10 to infer that lim(c!/”) = 1 when ¢ > 1.
Now suppose that 0 < ¢ < 1; then ¢ = 1/(1 + h,) for some h, > 0. Hence

Bernoulli’s Inequality implies that

I I I
<
A+ h) ~ 1+ nhy, ~ nhy’

CcC =

from which it follows that 0 < h, < 1/nc for n € N. Therefore we have

h, 1
< h, < —
1+h, " " nc

0<1—c'"=

so that
1\ 1
|c'/"—1|<<—)— for neN.
¢/ n

We now apply Theorem 3.1.10 to infer that lim(c!/”) = 1 when 0 < ¢ < 1.
(d) lim(n'/") =1

Since n'/" > 1 forn > 1, we can write n'/" = 1 + k,, for some k, > 0 when n > 1.
Hence n = (1 + k,)" for n > 1. By the Binomial Theorem, if » > 1 we have

nzl—l—nkn—l—%n(n—l)kﬁ—%----z1+%n(n—1)k,21,

whence it follows that
n—1>5Ln(n—1)k.

Hence k,zl < 2/nforn > 1.If ¢ > O is given, it follows from the Archimedean Property that
there exists a natural number N, such that 2/N, < 2. It follows that if n > sup{2, N, } then
2/n < &%, whence

0<n'/" 1=k, < (2/71)1/2 <eé.

Since & > 0 is arbitrary, we deduce that lim(n'/") = 1.

Exercises for Section 3.1

1. The sequence (x.,',) is defined by the following formulas for the nth term. Write the first five terms
in each case:
@ x,:= 1+ (_l)n: (b) Xn = (_l)n/n:

© x: :

‘_:m’ d x:=

n?+2
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The first few terms of a sequence (x,,) are given below. Assuming that the “natural pattern”
indicated by these terms persists, give a formula for the nth term x,,.

(@ 5,7,9,11,..., (b) 1/2,-1/4,1/8,-1/16,. . .,

(c) 1/2,2/3,3/4,4/5,..., d 1,4,9,16,....

List the first five terms of the following inductively defined sequences.

@ x:=1, x4 :=3x,+1,

(b) Y= 27 Ynt1 ::%(yn +2/yn)7

©) zi:=1, z23:=2, zy49:= (Zn+l +Zn)/(zn+l - Zn),

(d) S = 3, Sy = 5, Sn42 = Sp + Sn41-

For any b € R, prove that lim(b/n) = 0.

Use the definition of the limit of a sequence to establish the following limits.

(a) lim <n2’l 1) —0, (b) lim (n—i’_’—l> =2,
o )4 o w(z) -t
Show that

@ in( o) =0 o () -2
) lim <%) -0, ) 1im<(n;1+)nf> —0.

Let x, := 1/In(n + 1) forn € N.

(a) Use the definition of limit to show that lim(x,) = 0.

(b) Find a specific value of K(¢) as required in the definition of limit for each of (i) ¢ = 1/2, and
(ii) ¢ = 1/10.

Prove that lim(x,) =0 if and only if lim(|x,|) = 0. Give an example to show that the

convergence of (|x,|) need not imply the convergence of (x,).

Show that if x, > 0 for all n € N and lim(x,) = 0, then lim(,/X,) = 0.

Prove that if lim(x,) = x and if x > 0, then there exists a natural number M such that x,, > 0 for
alln > M.

1 1
Show that lim <— - > =0

n n+1
Show that lim(v/n? + 1 —n) = 0.
Show that lim(1/3") = 0.

Let b € R satisfy 0 < b < 1. Show that lim(nb") = 0. [Hint: Use the Binomial Theorem as in
Example 3.1.11(d).]

Show that 1im((2n)‘/") -1
Show that lim(r?/n!) = 0.
Show that lim(2"/n!) = 0. [Hint: If n > 3, then 0 < 2"/n! < 2(2)" 7]

If lim(x,) = x > 0, show that there exists a natural number K such that if n > K, then
IX < Xy < 2x.
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3.2.11 Theorem Let (x,) be a sequence of positive real numbers such that L :=
lim(x,41/xy,) exists. If L < 1, then (x,) converges and lim(x,) = 0.

Proof. By 3.2.4 it follows that L > 0. Let r be a number such that L < r < 1, and let
¢:=r— L > 0. There exists a number K € N such that if n > K then

Xn+1
Xn

—L| <e.

It follows from this (why?) that if » > K, then

Xn+1

<L+e=L+(r—L)=r.

n

Therefore, if n > K, we obtain

0 < Xpp1 < Xnt < Xp_11? < -+ < xgr" K+,

If we set C := xg/rX, we see that 0 < x,,4; < Cr"t! for all n > K. Since 0 < r < 1, it
follows from 3.1.11(b) that lim(r") =0 and therefore from Theorem 3.1.10 that
lim(x,) = 0. QED.

As an illustration of the utility of the preceding theorem, consider the sequence (x;,)
given by x, := n/2". We have

1 2" 1 1
Xn+l :n+1 FU——— 1+_ , A}
X 2+l 2 n

so that lim(x,.41/x,) = 4. Since § < 1, it follows from Theorem 3.2.11 that lim(n/2") = 0.

Exercises for Section 3.2

1. For x, given by the following formulas, establish either the convergence or the divergence of the
sequence X = (x,).

n (—1)"n
¢ =— b =
@ x= (b) xp =2
n? 2n? 43
(C) Xp 1= m, (d) Xp = m
2. Give an example of two divergent sequences X and Y such that:
(a) their sum X 4 Y converges, (b) their product XY converges.

Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent.

4. Show that if X and Y are sequences such that X converges to x # 0 and XY converges, then Y
converges.

5. Show that the following sequences are not convergent.

(@ (2), (b) ((—])"nz).
6. Find the limits of the following sequences:

N 2 (=)

(2) 11m((2+ 1/n) ) (b) 11m(n+2),

. (vn—1 . (n+1
© 11m<\/ﬁ+1), (d) hm(n\/ﬁ)'
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If (b,) is a bounded sequence and lim(a,) = 0, show that lim(a,b,) = 0. Explain why
Theorem 3.2.3 cannot be used.

Explain why the result in equation (3) before Theorem 3.2.4 cannot be used to evaluate the limit
of the sequence ((1 + 1/n)").

Lety, := vn+ 1 — /nforn € N. Show that (y/ny,) converges. Find the limit.
Determine the limits of the following sequences.

(a) (VA4n?+n-—2n), (b) (Vri2+5n—n).
Determine the following limits.

(a) 1im((3\/ﬁ)’/2”),

an+1 _+_bn+1

If 0 < a < b, determine lim <—-—,,—)
ar+b

Ifa>0,b>0, showthatlim(x/(n+a)(n+b) — n) = (a+b)/2.

Use the Squeeze Theorem 3.2.7 to determine the limits of the following,
@ (n'/), ®) ().
Show that if z, := (a" + b")"/" where 0 < a < b, then lim(z,) = b.

®) 1im((n+1)‘/‘“<”+')).

Apply Theorem 3.2.11 to the following sequences, where a, b satisfy 0 <a < 1,b > 1.
@@ (a"), (b) (8"/2%),
© (n/b"), d (2/3™).

(a) Give an example of a convergent sequence (x,) of positive numbers with lim(x,,;/x,) = 1.
(b) Give an example of a divergent sequence with this property. (Thus, this property cannot be
used as a test for convergence.)

Let X = (x,) be a sequence of positive real numbers such that lim(x,4;/x,) = L > 1. Show that
X is not a bounded sequence and hence is not convergent.

Discuss the convergence of the following sequences, where a, b satisfy 0 <a < 1,b > 1.
@ (n*a"), by (b"/n?),

() (b"/nY), (d) (n!/n").

Let (x,) be a sequence of positive real numbers such that lim(x!/") = L < 1. Show that there

exists a number r with 0 < r < 1 such that 0 < x,, < r" for all sufficiently large n € N. Use this
to show that lim(x,) = 0.

(a) Give an example of a convergent sequence (x,) of positive numbers with lim(x,ll/ =1

(b) Give an example of a divergent sequence (x,) of positive numbers with lim(x,'/ =1
(Thus, this property cannot be used as a test for convergence.)

Suppose that (x,) is a convergent sequence and (y, ) is such that for any ¢ > 0 there exists M such
that |x, — y,| < ¢ for all n > M. Does it follow that (y,) is convergent?

Show that if (x,,) and (y,) are convergent sequences, then the sequences (u,,) and (v,,) defined by
u, := max{x,,y,} and v, := min{x,,y,} are also convergent. (See Exercise 2.2.18.)

Show that if (x,), (y,), (z») are convergent sequences, then the sequence (w,) defined by
Wy, = mid{x,,y,, z,} is also convergent. (See Exercise 2.2.19.)

Section 3.3 Monotone Sequences

Until now, we have obtained several methods of showing that a sequence X = (x,,) of real
numbers is convergent:
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In 1741, Euler accepted an offer from Frederick the Great to join the Berlin Academy, where
he stayed for 25 years. During this period he wrote landmark books on a relatively new subject
called calculus and a steady stream of papers on mathematics and science. In response to a request
for instruction in science from the Princess of Anhalt-Dessau, he wrote her nearly 200 letters on
science that later became famous in a book titled Letters to a German Princess. When Euler lost
vision in one eye, Frederick thereafter referred to him as his mathematical “‘cyclops.”

In 1766, he happily returned to Russia at the invitation of Catherine the Great. His eyesight
continued to deteriorate and in 1771 he became totally blind following an eye operation.
Incredibly, his blindness made little impact on his mathematics output, for he wrote several

books and over 400 papers while blind. He remained active until the day of his death.

and complex analysis, and differential geometry. He also wrote hundreds of papers, many winning
prizes. A current edition of his collected works consists of 74 volumes.

Euler’s productivity was remarkable. He wrote textbooks on physics, algebra, calculus, real

Exercises for Section 3.3

10.

11.

12.

13.
14.
15.
16.

Let x; := 8 and x,,;, := %x,, + 2 for n € N. Show that (x,) is bounded and monotone. Find the
limit.

Let x; > 1and x,4 := 2 — 1/x, for n € N. show that (x,) is bounded and monotone. Find the
limit.

Let x; > 2and x,4) := 1 + +/x, — I for n € N. Show that (x,) is decreasing and bounded
below by 2. Find the limit.

Let x; := 1 and x4 := v/2 + x,, for n € N. Show that (x,) converges and find the limit.

Lety, := ,/p, wherep > 0,and y,,| := \/p + y, forn € N. Show that (y,) converges and find
the limit. [Hint: One upper bound is 1 + 2,/p.]

Leta > Oandletz, > 0. Define z,41 := v/a + z, for n € N. Show that (z,) converges and find
the limit.

Letx, :=a > 0and x4 := x, + 1 /x, forn € N. Determine whether (x, ) converges or diverges.

Let (a,) be an increasing sequence, (b,) be a decreasing sequence, and assume that a,, < b, for
all n € N. Show that lim(a,) < lim(b,), and thereby deduce the Nested Intervals Property 2.5.2
from the Monotone Convergence Theorem 3.3.2.

Let A be an infinite subset of R that is bounded above and let u := sup A. Show there exists an
increasing sequence (x,) with x, € A for all n € N such that u = lim(x,).
Establish the convergence or the divergence of the sequence (y,), where

1 1

1
= _t 4 — N.
Yn_ n+l+n+2+ +2n for ne

Letx, := 1/12 +1/2% 4 --- + 1/n? for each n € N. Prove that (x,) is increasing and bounded,
and hence converges. [Hint: Note that if k > 2, then 1/k*> < 1/k(k — 1) = 1/(k — 1) — 1/k.]

Establish the convergence and find the limits of the following sequences.

@ (4 1/m)"h), ®)  ((1+1/m)*),
© ((”niJ)’ @ ((1-1/n)).

Use the method in Example 3.3.5 to calculate \/2, correct to within 4 decimals.

Use the method in Example 3.3.5 to calculate /5, correct to within 5 decimals.
Calculate the number e, in Example 3.3.6 for n = 2, 4, 8, 16.

Use a calculator to compute e, for n = 50, n = 100, and » = 1000.
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(d) implies (a). Let w = sup S. If ¢ > 0 is given, then there are at most finitely many #
with w + ¢ < x,. Therefore w + ¢ belongs to V and lim sup (x,) < w + &. On the other
hand, there exists a subsequence of (x,) converging to some number larger than w — ¢, so
that w — ¢ is not in V, and hence w — ¢ < limsup (x,). Since ¢ > 0 is arbitrary, we
conclude that w = lim sup (x;,). QED.

As an instructive exercise, the reader should formulate the corresponding theorem for
the limit inferior of a bounded sequence of real numbers.

3.4.12 Theorem A bounded sequence (x,) is convergent if and only if lim sup (x,) =
lim inf (x,).

We leave the proof as an exercise. Other basic properties can also be found in the
exercises.

Exercises for Section 3.4

1. Give an example of an unbounded sequence that has a convergent subsequence.
2. Use the method of Example 3.4.3(b) to show that if 0 < ¢ < 1, then lim(c‘/ ") =1

3. Let (f,) be the Fibonacci sequence of Example 3.1.2(d), and let x, :=f,,;/f,- Given that
lim(x,) = L exists, determine the value of L.

4. Show that the following sequences are divergent.

(@ (1—-(=D)"+1/n), (b) (sinnw/4).
5. Let X =(x,) and Y = (y,) be given sequences, and let the ‘“‘shuffled” sequence Z = (z,) be
defined by z| := x,2, := Y|, ..., 221—1 = Xn, Z2n = Y, - - - - Show that Z is convergent if and

only if both X and Y are convergent and lim X = lim Y.

6. Let x, :=n'/"forn € N.
(a) Show that x,,; < x,ifand only if (1 + 1/n)" < n, and infer that the inequality is valid for
n > 3. (See Example 3.3.6.) Conclude that (x,) is ultimately decreasing and that x :=
lim(x,) exists.
(b) Use the fact that the subsequence (x2,) also converges to x to conclude that x = 1.

7. Establish the convergence and find the limits of the following sequences:

(2) ((1 + 1/n2)”2>, ® ((1+1/2n)),
© ((+1/my"), @ ((1+2/n)".
8. Determine the limits of the following.
(a) ((3n)1/2"), ®) ((1+1/20)™).
9. Suppose that every subsequence of X = (x,) has a subsequence that converges to 0. Show that
limX = 0.

10. Let (x,) be a bounded sequence and for each n € Nlets, := sup{xy : kK > n} and S := inf{s,}.
Show that there exists a subsequence of (x,) that converges to S.

11. Suppose that x, > 0 for all n € N and that lim((—1)"x,) exists. Show that (x,) converges.

12. Show that if (x,) is unbounded, then there exists a subsequence (x, ) such that
lim(1/x,,) = 0.

13. If x, := (—1)"/n, find the subsequence of (x,) that is constructed in the second proof of the
Bolzano-Weierstrass Theorem 3.4.8, when we take | := [—1,1].
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14. Let (x,) be a bounded sequence and let s := sup{x, : » € N}. Show that if s¢ {x, : n € N},
then there is a subsequence of (x,) that converges to s.

15. Let (I,) be a nested sequence of closed bounded intervals. For each n € N, let x,, € I,,. Use the
Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2.

16. Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence
is dropped.

17.  Alternate the terms of the sequences (1 + 1/x) and (—1/n) to obtain the sequence (x,) given by
(2,—1,3/2,-1/2,4/3,—-1/3, 5/4,—1/4,...).
Determine the values of lim sup(x,) and lim inf(x,). Also find sup{x,} and inf{x,}.

18. Show that if (x,) is a bounded sequence, then (x,) converges if and only if lim sup(x,) =
lim inf(x,).

19. Show that if (x,) and (y,) are bounded sequences, then
lim sup(x, +y,) < limsup(x,) + lim sup(y,).

Give an example in which the two sides are not equal.

Section 3.5 The Cauchy Criterion

The Monotone Convergence Theorem is extraordinarily useful and important, but it has the
significant drawback that it applies only to sequences that are monotone. It is important for
us to have a condition implying the convergence of a sequence that does not require us to
know the value of the limit in advance, and is not restricted to monotone sequences. The
Cauchy Criterion, which will be established in this section, is such a condition.

3.5.1 Definition A sequence X = (x,) of real numbers is said to be a Cauchy sequence
if for every ¢ > 0O there exists a natural number H(e) such that for all natural numbers
n,m > H(g), the terms x,, x,, satisfy |x, — x,,| < ¢.

The significance of the concept of Cauchy sequence lies in the main theorem of this
section, which asserts that a sequence of real numbers is convergent if and only if it is a
Cauchy sequence. This will give us a method of proving a sequence converges without
knowing the limit of the sequence.

However, we will first highlight the definition of Cauchy sequence in the following
examples.

3.5.2 Examples (a) The sequence (1/n) is a Cauchy sequence.

If ¢ > 0 is given, we choose a natural number H = H(¢) such that H > 2/¢. Then if
m,n > H, we have 1/n < 1/H < ¢/2 and similarly 1/m < ¢/2. Therefore, it follows that
if m, n > H, then

<ty titog
Syt Szt =e

Since ¢ > 0 is arbitrary, we conclude that (1/n) is a Cauchy sequence.

I 1 1 1 ¢ ¢
n m

(b) The sequence (1 + (—1)") is not a Cauchy sequence.
The negation of the definition of Cauchy sequence is: There exists ¢y > 0 such that for
every H there exist at least one n > H and at least one m > H such that |x,, — x,,| > &. For
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To estimate the accuracy, we note that |x, — x;| < 0.2. Thus, after # steps it follows from
Corollary 3.5.10(i) that we are sure that |x* — x,,| < 3"~!(7"72. 20). Thus, when n = 6, we
are sure that

Ix* — xq| < 3°/(7*-20) = 243/48 020 < 0.0051.

Actually the approximation is substantially better than this. In fact, since |xg — x5| <
0.000 0005, it follows from 3.5.10(ii) that |x* — x¢| < % |x¢ — xs| < 0.0000004. Hence the
first five decimal places of x¢ are correct. U

Exercises for Section 3.5

1. Give an example of a bounded sequence that is not a Cauchy sequence.

2. Show directly from the definition that the following are Cauchy sequences.

@ (), by (14+a+ ).
n 2! n!

3. Show directly from the definition that the following are not Cauchy sequences.

@ (=1, (b) <n+¥), © (nn)

4. Show directly from the definition that if (x,) and (y,) are Cauchy sequences, then (x, + y,) and
(xny,) are Cauchy sequences.

If x, := /n, show that (x,,) satisfies lim|x,,; — x,| = 0, but that it is not a Cauchy sequence.

6. Let p be a given natural number. Give an example of a sequence (x,) that is not a Cauchy
sequence, but that satisfies lim|x,;, — x,| = 0.

7. Let (x,) be a Cauchy sequence such that x,, is an integer for every n € N. Show that (x,,) is
ultimately constant.

Show directly that a bounded, monotone increasing sequence is a Cauchy sequence.
9. If0<r<1and|x,41 — Xs| <" foralln € N, show that (x,) is a Cauchy sequence.

10. If x; < x, are arbitrary real numbers and x, :=%(x,,_2 + x,—1) forn > 2, show that (x,) is
convergent. What is its limit?

11. If y; <y, are arbitrary real numbers and y, := %y,,_, +% Yn_o forn > 2, show that (y,) is
convergent. What is its limit?

12. If x; > Oand x4, := (2 + x,)"' forn > 1, show that (x,) is a contractive sequence. Find the
limit.

13. Ifx; :=2and x,,; :=2+ 1/x, forn > 1, show that (x,) is a contractive sequence. What is its
limit?

14. The polynomial equation x> —5x+ 1 =0 has a root r with 0 < r < 1. Use an appropriate
contractive sequence to calculate r within 107%,

Section 3.6 Properly Divergent Sequences

For certain purposes it is convenient to define what is meant for a sequence (x,) of real
numbers to “tend to £o00.”
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Proof. (a) If lim(x,) = +o0, and if & € R is given, then there exists a natural number
K(a) such that if n > K(«), then a < x,,. In view of (1), it follows that o < y, for all
n > K(a). Since « is arbitrary, it follows that lim(y,) = +oo0.

The proof of (b) is similar. Q.E.D.

Remarks (a) Theorem 3.6.4 remains true if condition (1) is ultimately true; that is, if
there exists m € N such that x, <y, for all n > m.
(b) If condition (1) of Theorem 3.6.4 holds and if lim(y,) = 400, it does not follow that
lim(x,) = +oo. Similarly, if (1) holds and if lim(x,) = —oo, it does not follow that
lim(y,) = —oo. In using Theorem 3.6.4 to show that a sequence tends to +oo [respectively,
—oo] we need to show that the terms of the sequence are ultimately greater [respectively,
less] than or equal to the corresponding terms of a sequence that is known to tend to 400
[respectively, —oo].

Since it is sometimes difficult to establish an inequality such as (1), the following
“limit comparison theorem™ is often more convenient to use than Theorem 3.6.4.

3.6.5 Theorem Let (x,) and (y,) be two sequences of positive real numbers and suppose
that for some L € R,L > 0, we have

(2) lim(x,/y,) = L.

Then lim(x,) = +oo if and only if lim(y,) = +oc.

Proof. If (2) holds, there exists K € N such that
1L < xu/y, <3L forall n>K.

Hence we have ({L)y, < x, < (3L)y, foralln > K. The conclusion now follows from a
slight modification of Theorem 3.6.4. We leave the details to the reader. QE.D.

The reader can show that the conclusion need not hold if either L = 0 or L = +o0.
However, there are some partial results that can be established in these cases, as will be
seen in the exercises.

Exercises for Section 3.6

1. Show that if (x,,) is an unbounded sequence, then there exists a properly divergent subsequence.

2. Give examples of properly divergent sequences (x,,) and (y,) withy, 7# 0 for all » € N such that:
(@) (xn/y,) is convergent, (b) (xn/y,) is properly divergent.

Show that if x, > 0 for all n € N, then lim(x,,) = 0 if and only if lim(1/x,) = +oo.

4. Establish the proper divergence of the following sequences.

@ (vn), (b) (Vn+1),
© (Vn-1), d) (n/v/n+1).

Is the sequence (n sin n) properly divergent?

6. Let (x,) be properly divergent and let (y,) be such that lim(x,y,) belongs to R. Show that (y,)
converges to 0.

7. Let (x,) and (y,) be sequences of positive numbers such that lim(x,/y,) = 0.
(a) Show that if lim(x,) = 400, then lim(y,) = +oo0.
(b) Show that if (y,) is bounded, then lim(x,) = 0.
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8. Investigate the convergence or the divergence of the following sequences:

(@ (Vn2+2), (b) (vn/(n* +1)),
© (AETT/V), @ (sinyR).

9. Let (x,) and (y,) be sequences of positive numbers such that lim(x,/y,) = 400,
(a) Show that if lim(y,) = 400, then lim(x,) = +oo0.
(b) Show that if (x,) is bounded, then lim(y,) = 0.

10. Show that if lim(a,/n) = L, where L > 0, then lim(a,) = +o0.

Section 3.7 Introduction to Infinite Series

We will now give a brief introduction to infinite series of real numbers. This is a topic that
will be discussed in more detail in Chapter 9, but because of its importance, we will
establish a few results here. These results will be seen to be immediate consequences of
theorems we have met in this chapter.

In elementary texts, an infinite series is sometimes ‘“‘defined” to be “‘an expression of
the form™

(1) x1+x2+...+xn+...

However, this ““definition” lacks clarity, since there is a priori no particular value that we
can attach to this array of symbols, which calls for an infinite number of additions to be
performed.

3.7.1 Definition If X := (x,) is a sequence in R, then the infinite series (or simply the
series) generated by X is the sequence S := (s;) defined by

S = X
§2 = 51+ x; (: X1 +X2)

Sk = Sp—1 + Xk (: X1 +X2+--- +xk)

The numbers Xx,, are called the terms of the series and the numbers s, are called the partial
sums of this series. If lim S exists, we say that this series is convergent and call this limit
the sum or the value of this series. If this limit does not exist, we say that the series S is
divergent.

It is convenient to use symbols such as

2) Z(x,,) or Zx,, or ixn
n=1

to denote both the infinite series S generated by the sequence X = (x,) and also to denote
the value lim S, in case this limit exists. Thus the symbols in (2) may be regarded merely
as a way of exhibiting an infinite series whose convergence or divergence is to be
investigated. In practice, this double use of these notations does not lead to any confusion,
provided it is understood that the convergence (or divergence) of the series must be
established.
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were true, we could argue as in (a). However, (10) is false for all n € N. The reader can
probably show that the inequality I 5
<

00— <=
<;12—n-}—1_n2

is valid for all n» € N, and this inequality will work just as well. However, it might take
some experimentation to think of such an inequality and then establish it.
Instead, if we take x, := 1/(n®> — n+ 1) andy, := 1/n?, then we have
Xy n? 1
o — N
y, n2—n+1 1—(1/n)+(1/n?)
Therefore, the convergence of the given series follows from the Limit Comparison Test
3.7.8(a).

o0
(c) The series Z
n=1

1.

1
n+1

This series closely resembles the series Y 1/y/n, which is a p-series with p = %; by
Example 3.7.6(¢), it is divergent. If we let x, :== 1/+/n+ 1 and y, := 1/+/n, then we have

Xo  /n 1

— = —1
Yo Vn+1 /1+1/n
Therefore the Limit Comparison Test 3.7.8(a) applies.

(0.0]
1
(d) The series E = is convergent.
n!

is divergent.

n=1
It would be possible to establish this convergence by showing (by Induction) that
n? < n!forn > 4, whence it follows that

0<—<— for n>4.
Alternatively, if we let x := | /n!andy, := 1/n?, then (when n > 4) we have

2
Xn n n 1
0<—=—= < 0.
=y, n 1.2--(n—-1) n-2_"
Therefore the Limit Comparison Test 3.7.8(b) applies. (Note that this test was a bit
troublesome to apply since we do not presently know the convergence of any series for

which the limit of x,/y, is really easy to determine.) O

Exercises for Section 3.7

1. Let)_ a, be a given series and let ) b, be the series in which the terms are the same and in the
same order as in Y a, except that the terms for which a, = 0 have been omitted. Show that
> a, converges to A if and only if > b, converges to A.

2. Show that the convergence of a series is not affected by changing a finite number of its terms. (Of
course, the value of the sum may be changed.)

3. By using partial fractions, show that

00 1 00 1 1 '
@ > mrnmry =" ® D e TmErar —a” & ife>0

- 1 1
(©) Z:n(n+ Nn+2) 4

n=1

4. If 5 x, and )y, are convergent, show that > (x, + y,) is convergent.



10.

11.

12.

13.

14.

15.

16.
17.

18.
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Can you give an example of a convergent series ) x, and a divergent series »_y, such that
> (xn +y,) is convergent? Explain.

(a) Calculate the value of Y (2/7)". (Note the series starts at n = 2.)

n=2

(b) Calculate the value of S (1/3)”. (Note the series starts at n = 1.)

n=1

o0
Find a formula for the series > r** when |r| < 1.
n=1

Let ry,r2,...,rp,... be an enumeration of the rational numbers in the interval [0,1].
(See Section 1.3.) For a given ¢ > 0, put an interval of length ¢” about the nth rational number
r,forn=1,2,3,..., and find the total sum of the lengths of all the intervals. Evaluate this

number for ¢ = 0.1 and ¢ = 0.01.

[o.¢]
(a) Show that the series ) cos n is divergent.
n=1

(b) Show that the series Y (cosn)/n? is convergent.
n=1

00 n
Use an argument similar to that in Example 3.7.6(f) to show that the series E% is
convergent. n=l

If 3 a, witha, > 0 is convergent, then is Y a2 always convergent? Either prove it or give a
counterexample.

If " a, witha, > 0 is convergent, then is ) _ ,/a, always convergent? Either prove it or give a
counterexample.

If )" a, witha, > Oisconvergent, thenis ) | ,/a@,a,;; always convergent? Either prove it or give
a counterexample.

If > a,witha, > 0 is convergent, and if b, := (a; + - - + a,)/nforn € N, then show that
> by, is always divergent.
Let " a(n) be such that (a(n)) is a decreasing sequence of strictly positive numbers. If s(n)

n=1
denotes the nth partial sum, show (by grouping the terms in s(2") in two different ways) that

Ha(1) +2a(2) + - +2"a(2")) < s(2") < (a(1) +2a(2) + - - + 2" 'a(2"")) + a(2").
Use these inequalities to show that io: a(n) converges if and only if i 2"a(2") converges. This
result is often called the Cauchy ”Czolndensation Test; it is very p'é):“l/erful.

Use the Cauchy Condensation Test to discuss the p-series io: (1/nP) forp > 0.

n=1
Use the Cauchy Condensation Test to establish the divergence of the series:

1 1
@ Z nlnn’ | ®) Z n(lnn)(Inlnn)’
© Zn(ln n)(Inlnn)(Inlnlnz)

Show that if ¢ > 1, then the following series are convergent:

1 1
@ Zn(ln‘n)c, ®) Zn(lnn)(lnlnn)c'
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Exercises for Section 4.1

10.

11.

12.

13.

14.

15.

16.

17.

Determine a condition on |x — 1| that will assure that:
@ |@-1<4 (b) [x*—1|<1/1073,

) |x¥*—1]<1/n  foragivenn €N, (d |¥—-1]<1/n foragivenneN.
Determine a condition on |x — 4| that will assure that:
(@ |vx-—2| <4, ) |vx-2| <1072

Let ¢ be a cluster pomt of ACR and let f : A — R. Prove that 11m f (x) =L if and only if
lim [f(x) — L[ =
Letf :=R — R and let ¢ € R. Show that }Cimf(x) = L if and only if lin(l)f(x +c)=L.

—C X—

Let I := (0,a) where a > 0, and let g(x) := x* for x € I. For any points x, ¢ € I, show that
| g(x) — ¢*| < 2a|x — ¢|. Use this inequality to prove that lim x*=c*forany c € L.

X—=C

Let I/ be an interval in R, letf : I — R, and let ¢ € I. Suppose there exist constants K and L such
that |f(x) — L| < K|x — c| for x € I. Show that limf(x) =
X—C

Show that lim x* = ¢* for any c € R

X—=C

Show that lim v/x = /¢ for any ¢ > 0.

X—=C
Use either the -8 definition of limit or the Sequential Criterion for limits, to establish the

following limits.

1 X 1
im—— = —1 i —
@ .lrl—»nél——x ’ ®) ,lvl—r»r}l—i—x 2
? Z-x+1 1
©) llmx— —0, @ lm>—*H1_2
x—0 l_xl x—1 x+1 2
Use the definition of limit to show that
. X+5
lim (x* +4x) = 12, b) lim
@ lim (" + 4x) © m, 3~
Use the definition of limit to prove the following.
. 2x+3 . x*—3x
@ MM —o= "> ® MMy =%
Show that the following limits do not exist.
.1
(a) )lcl—r»l(l)F (x > 0) ) (b) ll_in\/—_ (x > O) ,
(c) lir% (x + sgn(x)), (d) 111’1(1) sin(1/x?).
X— X

Suppose the function f : R — R has limit L at 0, and let @ > 0. If g : R — R is defined by
g(x) :=f(ax) for x € R, show that lin(l) g(x)=L.
X

Let ¢ € R and let f : R — R be such that lim (f(x))* = L.
(a) Show that if L =0, then limf(x) =
X—=C
(b) Show by example that if L # 0, then f may not have a limit at c.

Let f : R — R be defined by setting f(x) := x if x is rational, and f(x) = 0 if x is irrational.
(a) Show that f has a limit at x = 0.
(b) Use a sequential argument to show that if ¢ # 0, then f does not have a limit at c.

Letf : R — R, let I be an open interval in R, and let ¢ € I. If £, is the restriction of fto I, show
that f; has a limit at c if and only if f has a limit at ¢, and that the limits are equal.

Let f: R — R, let J be a closed interval in R, and let ¢ € J. If £, is the restriction of f to J,
show that if fhas a limit at ¢ then f, has a limit at ¢. Show by example that it does not follow that
if £, has a limit at ¢, then f has a limit at c.
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Exercises for Section 4.2

1.

10.

11.

12.

13.

14.

15.

Apply Theorem 4.2.4 to determine the following limits:

. 2

@ lim(x+1)2x+3) (x€R), ® 1imEr2 (x>0
X— x_,|x2_2 ’
: 1 1 . ox+1

@ in(f7z) 620 @ Mg el

Determine the following limits and state which theorems are used in each case. (You may wish
to use Exercise 15 below.)

2x +1 . x*2—4
im +/ b
(a) lim <13 (x>0), (b) )lcl—»néx—2 (x > 0),
2
_ ' -1
© nmEED L s, @ 1mY*=l x>0
x—0 X x—1 X —
Find lim VLT 2~ VI43x x>0,
x—0 x+2x2

Prove that lir% cos(1/x) does not exist but that lirr(l) x cos(1/x) = 0.
X— X—

Let f, g be defined on A C Rto R, and let ¢ be a cluster point of A. Suppose that fis bounded on a
neighborhood of ¢ and that lim g = 0. Prove that limfg = 0.

X—C X—C

Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a).

Use the sequential formulation of the limit to prove Theorem 4.2.4(b).

Let n € N be such that n > 3. Derive the inequality —x?> < x" < x? for —1 < x < 1. Then use
the fact that lm(l)x = 0 to show that lim X" = 0.

x--0
Let f, g be defined on A to R and let ¢ be a cluster point of A.
(a) Show that if both 11m f and 11m (f + g) exist, then lim g exists.

X—C

(b) If 11m f and 11m fg ex1st does 1t follow that lim g exists?

X—C
Give examples of functlons fand g such that f and g do not have limits at a point c, but such that
both f + g and fg have limits at c.
Determine whether the following limits exist in R.

(a) lin(l)sin(l/xz) (x#0), (b) )lci_r_)r(l)xsin(l/xz) (x #£0),
(©) lmsgnsin(l/x) (x #0), (d) lirr(l)\/)_csin(l/xz) (x > 0).

Let f : R — R be such that f(x +y) = f(x) +f(y) for all x, y in R. Assume that lirr(l)f =L
X~
exists. Prove that L = 0, and then prove that fhas a limit at every point ¢ € R. [Hint: First note that
F(2x) = f(x) + f(x) = 2f(x) for x € R. Also note that f(x) = f(x — ¢) + f(c) for x, ¢ in R.]
Functions f and g are defined on R by f(x) :=x + 1 and g(x) ;=2 if x # 1 and g(1) := 0.
(a) Find lin} g (f(x)) and compare with the value of g(lin} f(x)).
x— X—
(b) Find lirr} f(g (x)) and compare with the value of f(lin} g (x)).
X— X—
LetA C R,letf : A — Randlet c € R be acluster point of A. If lim f exists, and if | f| denotes
X—C
the function defined for x € A by |f|(x) := | f(x)|, prove that lim |f| =
X—C X—C

Let ACR, let f: A — R, and let ¢ € R be a cluster point of A. In addition, suppose that
f(x) > 0forall x € A, and let \/f be the function defined for x € A by (Vf) (x) := /f(x). If

limf exists, prove that 11m \/— /llm

X—C

Section 4.3 Some Extensions of the Limit Concept'

In this section, we shall present three types of extensions of the notion of a limit of a
function that often occur. Since all the ideas here are closely parallel to ones we have
already encountered, this section can be read easily.

This section can be largely omitted on a first reading of this chapter.
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Exercises for Section 4.3

woN

&

10.
11.

12.

13.

Prove Theorem 4.3.2.

Give an example of a function that has a right-hand limit but not a left-hand limit at a point.
Let f(x) := |x|7'/? for x # 0. Show that xl_i‘r(r)1+f(x) = xl_i};l)’l_f(x) = +-o00.

Let ¢ € R and let f be defined for x € (c,oc) and f(x) > 0 for all x € (¢,00). Show that
limf = oo if and only if }Ci_.n}_l/f =0.

X—=C

Evaluate the following limits, or show that they do not exist.

@ lim - (x#1), () lim — (x#1),

(© Jim (x+2)/Vx (x>0), @ lim (x+2)/vVx (x>0),

(e) lim (Vx+1)/x (x>-1), (f) lim (Vx+1)/x (x>0),
L x— L Vx—x

(8 _x‘l—l—froloﬁ—l-:; (x >0), (b xlggo\/)_chx (x > 0).

Prove Theorem 4.3.11.

Suppose that fand g have limits in R as x — oo and that f(x) < g(x) for all x € (a, o). Prove
that lerolof < lg&g

Let ; be deﬁnzd on (0, 00) to R. Prove that X]l_l.glc f(x) =L if and only if xl_i.r& f(1/x)=L.
Show that if /" : (a,00) — R is such that lim xf(x) = L where L € R, then li_érgj(x) =0.
Prove Theorem 4.3.14. o i

Suppose that lvl—ql f(x) = L where L > 0, and that }Cl_l”l‘(l g(x) = 0o. Show that }cl_'n} Ff(x)g(x) = oo.
If L = 0, show by example that this conclusion may fail.

Find functions f and g defined on (0, 0o0) such that lim f = oo and lim g = oo, and
lim (f —g) = 0. Can you find such functions, with g(;;;o 0 for all x € EC(—)jZo) such that

Let f and g be defined on (¢, oc) and suppose lim f =L and lim g = oo. Prove that
lim fog=L. e e

X-=0C
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Figure 5.1.3 Graph of f(x) = x sin(1/x) (x #0)

Exercises for Section 5.1

10.
11.

12.

13.

Prove the Sequential Criterion 5.1.3.
Establish the Discontinuity Criterion 5.1.4.

Let ¢ < b < c¢. Suppose that f is continuous on [«, b], that g is continuous on [b, ¢], and that

. f(b) = g(b). Define h on [q, ¢] by h(x) := f(x) for x € [a,b] and h(x) := g(x) for x € [b, ¢].

Prove that % is continuous on [a, ¢].

If x € R, we define [x] to be the greatest integer n € Z such that n < x. (Thus, for example,

[8.3] = 8,[x] = 3,[ — =] = —4.) The function x — [x] is called the greatest integer function.

Determine the points of continuity of the following functions:

@ f(x) =[x, b) g(x) = x[x],

(c) h(x) := [sin x], (d) k(x):=[1/x] (x#0).

Let f be defined for all x € R, x # 2, by f(x) = (x* + x — 6)/(x — 2). Can f be defined at

x = 2 in such a way that f is continuous at this point?

LetA C Randletf: A — R be continuous at a point ¢ € A. Show that for any ¢ > 0, there exists

a neighborhood Vs(c) of ¢ such that if x,y € A N Vs(c¢), then | f(x) — f(y)| <e.

Letf : R — R be continuous at ¢ and let f(¢) > 0. Show that there exists a neighborhood V;(¢)

of ¢ such that if x € V4(c), then f(x) > 0.

Let f : R — R be continuous on R and let S := {x € R : f(x) = 0} be the “zero set” of f. If

(xx) is in S and x = lim(x,), show that x € S.

Let ACBCR,letf:B— R and let g be the restriction of f to A (that is, g(x) = f(x) for

x € A).

(a) If fis continuous at ¢ € A, show that g is continuous at ¢.

(b) Show by example that if g is continuous at ¢, it need not follow that f is continuous
at c.

Show that the absolute value function f(x) := |x| is continuous at every point ¢ € R.

Let K > 0 and let f : R — R satisfy the condition |f(x) — f(y)| < K|x — y| for all x,y € R.

Show that fis continuous at every point ¢ € R.

Suppose thatf : R — R is continuous on R and that f(r) = 0 for every rational number r. Prove

that f(x) = O for all x € R.

Define g : R — R by g(x) := 2x for x rational, and g(x) := x + 3 for x irrational. Find all

points at which g is continuous.
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14. Let A :=(0,00) and let k : A — R be defined as follows. For x € A, x irrational, we define
k(x) = 0; for x € A rational and of the form x = m/n with natural numbers m, n having no
common factors except 1, we define k(x) := n. Prove that k is unbounded on every open interval
in A. Conclude that k is not continuous at any point of A. (See Example 5.1.6(h).)

15. Let f:(0,1) — R be bounded but such that )1(518 f does not exist. Show that there are two
sequences (x,) and (y,) in (0, 1) with lim(x,) = 0 = lim(y,), but such that (f(x,)) and (f(y,))
exist but are not equal.

Section 5.2 Combinations of Continuous Functions

LetA C R and let fand g be functions that are defined on A to R and let b € R. In Definition
4.2.3 we defined the sum, difference, product, and multiple functions denoted by
f+g f—g fg bf. In addition, if A: A — R is such that 4(x) # 0 for all x € A, then
we defined the quotient function denoted by f/A.

The next result is similar to Theorem 4.2.4, from which it follows.

5.2.1 Theorem Let A C R, let fand g be functions on A to R, and let b € R. Suppose
that ¢ € A and that f and g are continuous at c.

@) Thenf+g,f— g, fg and bf are continuous at c.

(b) Ifh:A — R is continuous at ¢ € A and if h(x) # 0 for all x € A, then the quotient
f/h is continuous at c.

Proof. 1If ¢ € A is not a cluster point of A, then the conclusion is automatic. Hence we
assume that ¢ is a cluster point of A.

(a) Since fand g are continuous at ¢, then
f(c)=1lim f and g(c)=lim g.
Hence it follows from Theorem 4.2.4(a) that
(f +8)(c) =f(c) +8(c) = lim (f +g).

Therefore f + g is continuous at ¢. The remaining assertions in part (a) are proved in a
similar fashion.

(b) Since ¢ € A, then h(c) # 0. But since h(c) = lirrz h, it follows from Theorem 4.2.4(b)
that =

() =0 = 1imh:ll_,“2-

X—C

Therefore f/h is continuous at c. QED.

)
h h

flo) _ = (f)

The next result is an immediate consequence of Theorem 5.2.1, applied to every point
of A. However, since it is an extremely important result, we shall state it formally.

5.2.2 Theorem Let A CR, let fand g be continuous on A to R, and let b € R.

(@) The functions f + g, f — g, fg and bf are continuous on A.

(b) If h: A — R is continuous on A and h(x) # 0 for x € A, then the quotient f/h is
continuous on A.
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A B C
Figure 5.2.1 The composition of f and g

Theorems 5.2.6 and 5.2.7 are very useful in establishing that certain functions are
continuous. They can be used in many situations where it would be difficult to apply the
definition of continuity directly.

5.2.8 Examples (a) Letg.(x) := |x| for x € R. It follows from the Triangle Inequality
that

g1 () — &1(c)] < |x —
for all x,c € R. Hence g, is continuous at ¢ € R. If f: A — R is any function that is

continuous on A, then Theorem 5.2.7 implies that g, o f = |f| is continuous on A. This
gives another proof of Theorem 5.2.4.

(b) Let g,(x) := /x for x > 0. It follows from Theorems 3.2.10 and 5.1.3 that g, is
continuous at any number ¢ > 0. If f : A — R is continuous on A and if f(x) > 0 for all
X € A, then it follows from Theorem 5.2.7 that g, o f = +/f is continuous on A. This gives
another proof of Theorem 5.2.5.

(c) Let g4(x) := sinx for x € R. We have seen in Example 5.2.3(c) that g5 is continuous
on R. If f : A — R is continuous on A, then it follows from Theorem 5.2.7 that g, o f is
continuous on A.

In particular, if f(x) := 1 /x for x # 0, then the function g(x) := sin(1/x) is continu-
ous at every point ¢ # 0. [We have seen, in Example 5.1.8(a), that g cannot be defined at
0 in order to become continuous at that point.] ]

Exercises for Section 5.2

1. Determine the points of continuity of the following functions and state which theorems are used
in each case.

242 1
@ f(x) ::x;—f:— (x e R), (b)) g(x):=+vx+vx (x>0),
© h(x):= _—vl—l—x]smx| A(x #0), (d)  k(x):=cosV1l+x2 (xeR).

2. Show that if f : A — R is continuous on A C R and if n € N, then the function f” defined by
f(x) = (f(x))", for x € A, is continuous on A.

3. Give an example of functions fand g that are both discontinuous at a point ¢ in R such that (a) the
sum f + g is continuous at ¢, (b) the product fg is continuous at c.
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4. Let x — [x] denote the greatest integer function (see Exercise 5.1.4). Determine the points of
continuity of the function f(x) := x — [x], x € R.

5. Let g be defined on Rby g(1) := 0, and g(x) :=2if x # 1,and let f(x) := x + 1 forall x € R.
Show that lilT(l) gof # (gof)(0). Why doesn’t this contradict Theorem 5.2.6?
xX—
6. Let f, g be defined on R and let ¢ € R. Suppose that limf = b and that g is continuous at b.
Show that lim g of = g(b). (Compare this result with Theorem 5.2.7 and the preceding
X—C
exercise.)
7. Give an example of a function f : [0, 1] — R that is discontinuous at every point of [0, 1] but
such that |f| is continuous on [0, 1].
8. Letf, g be continuous from R to R, and suppose that f(r) = g(r) for all rational numbers . Is it
true that f(x) = g(x) for all x € R?

9. Let &: R — R be continuous on R satisfying h(m/2") = 0 for all m € Z,n € N. Show that
h(x) =0 for all x € R.

10. Letf: R — R be continuous on R, and let P := {x € R : f(x) > 0}. If ¢ € P, show that there
exists a neighborhood Vs(c¢) C P.

11. If fand g are continuous on R, let §:= {x € R : f(x) > g(x)}. If (s,) C S and lim(s,) = s,
show that s € S.
12. A function f : R — R is said to be additive if f(x + y) = f(x) + f(y) for all x, y in R. Prove

that if f is continuous at some point x,, then it is continuous at every point of R. (See
Exercise 4.2.12.)

13. Suppose that fis a continuous additive function on R. If ¢ := (1), show that we have f(x) = ¢x
for all x € R. [Hint: First show that if 7 is a rational number, then f(r) = cr.]

14. Let g: R — R satisfy the relation g(x +y) = g(x) g(y) for all x, y in R. Show that if g is
continuous at x = 0, then g is continuous at every point of R. Also if we have g(a) = 0 for some
a € R, then g(x) =0 for all x € R.

15. Letf,g: R — R be continuous at a point ¢, and let /(x) := sup{ f(x), g(x)} for x € R. Show
that A(x) =1 (f(x) +g(x)) +3|f(x) —g(x)| for all x€R. Use this to show that 4 is
continuous at c.

Section 5.3 Continuous Functions on Intervals

Functions that are continuous on intervals have a number of very important properties that
are not possessed by general continuous functions. In this section, we will establish some
deep results that are of considerable importance and that will be applied later. Alternative
proofs of these results will be given in Section 5.5.

5.3.1 Definition A function f : A — R is said to be bounded on A if there exists a
constant M > 0 such that |f(x)] < M for all x € A.

In other words, a function is bounded on a set if its range is a bounded set in R. To say
that a function is not bounded on a given set is to say that no particular number can serve
as a bound for its range. In exact language, a function fis not bounded on the set A if given
any M > 0, there exists a point xy € A such that |f(xp)| > M. We often say that f is
unbounded on A in this case.

For example, the function f defined on the interval A := (0, c0) by f(x) := 1/x is not
bounded on A because for any M > 0 we can take the point xp := 1/(M + 1) in A to get
f(xm) =1/xpy =M + 1 > M. This example shows that continuous functions need not be



140 CHAPTER 5 CONTINUOUS FUNCTIONS

To prove the Preservation of Intervals Theorem 5.3.10, we will use Theorem 2.5.1
characterizing intervals.

5.3.10 Preservation of Intervals Theorem Let I be an interval and let f : I — R be
continuous on I. Then the set f(I) is an interval.

Proof. Let a,B € f(I) with a < B; then there exist points a,b € I such that o = f(a)
and B = f(b). Further, it follows from Bolzano’s Intermediate Value Theorem 5.3.7
that if k € («,8) then there exists a number c € I with k = f(c) € f(I). Therefore
[, B] C f(I), showing that f(I) possesses property (1) of Theorem 2.5.1. Therefore
f(I) is an interval. Q.E.LD.

Exercises for Section 5.3

1. Let[]:=[a,b] and let f : I — R be a continuous function such that f(x) > 0 for each x in I.
Prove that there exists a number o > 0 such that f(x) > « for all x € I.

2. Letl:={[a,b]andletf : I — R and g :I — R be continuous functions on /. Show that the set
E:={x€l:f(x) = g(x)} has the property that if (x,) C E and x, — xo, then xy € E.

3. Let/:=[a,b] and let f : I — R be a continuous function on / such that for each x in / there
exists y in / such that |f(y)| < 1|f(x)|. Prove there exists a point ¢ in I such that f(c) = 0.

4. Show that every polynomial of odd degree with real coefficients has at least one real root.

Show that the polynomial p(x) := x* + 7x* — 9 has at least two real roots. Use a calculator to
locate these roots to within two decimal places.

6. Let fbe continuous on the interval [0, 1] to R and such that f(0) = f(1). Prove that there exists
apoint ¢ in [0, 4] such that f(c) = f(c + 3). [Hint: Consider g(x) = f(x) — f(x + 1).] Conclude
that there are, at any time, antipodal points on the earth’s equator that have the same
temperature.

7. Show that the equation x = cos x has a solution in the interval [0,77/2]. Use the Bisection
Method and a calculator to find an approximate solution of this equation, with error less than
107,

8. Show that the function f(x) := 21nx + \/x — 2 has root in the interval [1, 2], Use the Bisection
Method and a calculator to find the root with error less than 102

9. (a) The function f(x) := (x — 1)(x —2)(x — 3)(x — 4)(x — 5) has five roots in the interval

[0, 7]. If the Bisection Method is applied on this interval, which of the roots is located?

(b) Same question for g(x) := (x — 2)(x — 3)(x — 4)(x — 5)(x — 6) on the interval [0, 7].

10. If the Bisection Method is used on an interval of length | to find p, with error | p, — ¢| < 107,
determine the least value of n that will assure this accuracy.

11. Let I:=[a,b], let f:1— R be continuous on I, and assume that f(a) < 0, f(b) > 0. Let
W:={xe€l:f(x) <0}, and let w := sup W. Prove that f(w) = 0. (This provides an alter-
native proof of Theorem 5.3.5.)

12. Let/:=[0,7/2] and let f : I — R be defined by f(x) := sup{x?, cos x} for x € I. Show there
exists an absolute minimum point x, € [ for f on I. Show that x; is a solution to the equation

cos x = x2.

13. Suppose that f : R — R is continuous on R and that lim f = 0 and lim f = 0. Prove that fis
bounded on R and attains either a maximum or minimum on R. Givé an example to show that
both a maximum and a minimum need not be attained.

14. Letf: R — R be continuous on R and let 8 € R. Show that if x;, € R is such that f(xp) < 8,
then there exists a §-neighborhood U of x such that f(x) < 8 for all x € U.
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15. Examine which open [respectively, closed] intervals are mapped by f(x) := x? for x € R onto
open [respectively, closed] intervals.

16. Examine the mapping of open [respectively, closed] intervals under the functions g(x) :=
1/(x*> + 1) and h(x) := x> for x € R.

17. If f: [0,1] — R is continuous and has only rational [respectively, irrational] values, must f be
constant? Prove your assertion.

18. Letl := [a,b] andletf : I — R be a (not necessarily continuous) function with the property that
for every x € I, the function f is bounded on a neighborhood V; (x) of x (in the sense of
Definition 4.2.1). Prove that fis bounded on /.

19. LetJ := (a,b)andlet g : / — R be a continuous function with the property that for every x € J,
the function g is bounded on a neighborhood V; (x) of x. Show by example that g is not
necessarily bounded on J.

Section 5.4 Uniform Continuity

Let ACR and let f: A — R. Definition 5.1.1 states that the following statements are
equivalent:

(i) fis continuous at every point u € A;

(if) given & > 0 and u € A, there is a (¢, u) > 0 such that for all x such that x € A
and |x — u| < 8(¢, u), then |f(x) —f(u)| < e.

The point we wish to emphasize here is that § depends, in general, on both ¢ > 0 and
u € A. The fact that § depends on u is a reflection of the fact that the function f may change
its values rapidly near certain points and slowly near other points. [For example, consider
f(x) :=sin(1/x) for x > 0; see Figure 4.1.3.]

Now it often happens that the function fis such that the number § can be chosen to be
independent of the point u € A and to depend only on ¢. For example, if f(x) := 2x for all
x € R, then

If(x) = ()] = 2|x —ul,

and so we can choose (¢, u) := ¢/2 for all ¢ > 0 and all u € R. (Why?)
On the other hand if g(x) := 1/x for x € A := {x € R : x > 0}, then

u—x
1 - = i
(1) 8(0x) — g(u) =
If u € A is given and if we take
(2) 8(e, u) := inf{iu,Lu’e},

then if |x — u| < 8(¢,u), we have |x — u| < Jusothatlu < x < 3u, whence it follows that
1/x < 2/u. Thus, if |x — u| < 1u, the equality (1) yields the inequality

(3) 18(x) — g(u)| < (2/1%)|x — ul.
Consequently, if |x — u| < 8(¢,u), then (2) and (3) imply that
8(x) — g(w)| < (2/u’)(3%¢) =e.

We have seen that the selection of §(¢, u) by the formula (2) “works” in the sense that it
enables us to give a value of § that will ensure that |g(x) — g(u)| < & when |x — u| < § and
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We shall close this section by stating the important theorem of Weierstrass con-
cerning the approximation of continuous functions by polynomial functions. As would be
expected, in order to obtain an approximation within an arbitrarily preassigned ¢ > O,
we must be prepared to use polynomials of arbitrarily high degree.

5.4.14 Weierstrass Approximation Theorem Let [ =(a, b| and let f:1 — R be a
continuous function. If ¢ > 0 is given, then there exists a polynomial function p, such that
|f(x) = p.(x)| < ¢forall x €l

There are a number of proofs of this result. Unfortunately, all of them are rather

intricate, or employ results that are not yet at our disposal. (A proof can be found in Bartle,
ERA, pp. 169-172, which is listed in the References.)

Exercises for Section 5.4

1. Show that the function f(x) := 1/x is uniformly continuous on the setA := [a, 00), where a is a
positive constant.

2. Show that the function f(x) := 1/x? is uniformly continuous on A := [I, oo), but that it is not
uniformly continuous on B := (0, 00).

3. Use the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not
uniformly continuous on the given sets.
(@ f(x)=x% A:=]0,00).
(b) g(x):=sin(1/x), B:=(0,00).

4. Show that the function f(x) := 1/(1 + x?) for x € R is uniformly continuous on R.

Show that if f and g are uniformly continuous on a subset A of R, then f + g is uniformly
continuous on A.

6. Show that if fand g are uniformly continuous on A C R and if they are hoth bounded on A, then
their product fg is uniformly continuous on A.

7. If f(x) := x and g(x) := sin x, show that both f and g are uniformly continuous on R, but that
their product fg is not uniformly continuous on R.

8. Prove that if f and g are each uniformly continuous on R, then the composite function f o g is
uniformly continuous on R.

9. If fis uniformly continuous on A C R, and |f(x)| > k > O for all x € A, show that 1/f is
uniformly continuous on A.

10. Prove that if fis uniformly continuous on a bounded subset A of R, then f is bounded on A.

11. If g(x) := y/x for x € [0, 1], show that there does not exist a constant K such that |g(x)| <
K|x| for all x € [0, 1]. Conclude that the uniformly continuous g is not a Lipschitz function
on [0, 1].

12. Show that if fis continuous on [0, oo) and uniformly continuous on [a, 0o) for some positive
constant a, then f is uniformly continuous on [0, 00).

13. LetA C R and suppose that f : A — R has the following property: for each ¢ > 0 there exists a
function g, : A — R such that g, is uniformly continuous on A and |f(x) — g,(x)| < ¢ for all
x € A. Prove that fis uniformly continuous on A.

14. A function f : R — R is said to be periodic on R if there exists a number p > 0 such that
f(x + p) = f(x) for all x € R. Prove that a continuous periodic function on R is bounded and
uniformly continuous on R.
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15. Let fand g be Lipschitz functions on A.
(a) Show that the sum f + g is also a Lipschitz function on A.
(b) Show that if f and g are bounded on A, then the product fg is a Lipschitz function on A.
(¢c) Give an example of a Lipschitz function fon [0, 0o) such that its square 2 is not a Lipschitz
function.

16. A function is called absolutely continuous on an interval I if for any ¢ > 0 there existsa § > 0
such that for any pair-wise disjoint subintervals [x, y;|, K =1,2,...,n, of I such that
> Ixk — yi] < 8 wehave > |f(xk) —f(yi)| < & Show that if f satisfies a Lipschitz condition
on I, then fis absolutely continuous on /.

Section 5.5 Continuity and Gauges'

We will now introduce some concepts that will be used later—especially in Chapters 7 and
10 on integration theory. However, we wish to introduce the notion of a ‘“‘gauge’’ now
because of its connection with the study of continuous functions. We first define the notion
of a tagged partition of an interval.

5.5.1 Definition A partition of an interval / := [a, b] isa collection P = {I,...,I,} of
non-overlapping closed intervals whose union is [a, b]. We ordinarily denote the intervals
by I; := [x;_1, x;], where

a=x) < - < X1 <x;<--<x,=>b.

The points x; (i =0,...,n) are called the partition points of P. If a point #; has been
chosen from each interval I;, fori =1, . . . , n, then the points ¢, are called the tags and the
set of ordered pairs

P={i, 11)y-,(Ins ta)}
is called a tagged partition of /. (The dot signifies that the partition is tagged.)

The “fineness’ of a partition P refers to the lengths of the subintervals in P. Instead of
requiring that all subintervals have length less than some specific quantity, it is often useful
to allow varying degrees of fineness for different subintervals /; in P. This is accomplished
by the use of a “gauge,” which we now define.

5.5.2 Definition A gauge on/is astrictly positive function defined on /. If § is a gauge on
I, then a (tagged) partition P is said to be §-fine if

(1) el Clti—68(t), ti+8(t;)] for i=1,...,n.

We note that the notion of é-fineness requires that the partition be tagged, so we do not
need to say ‘‘tagged partition™ in this case.

A gauge 8 on an interval  assigns an interval [t — 8(¢), ¢ + 8(¢)] to each point ¢ € I. The
d-fineness of a partition P requires that each subinterval I; of P is contained in the interval
determined by the gauge § and the tag ¢; for that subinterval. This is indicated by the
inclusions in (1); see Figure 5.5.1. Note that the length of the subintervals is also controlled
by the gauge and the tags; the next lemma reflects that control.

"This section can be omitted on a first reading of this chapter.
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Exercises for Section 5.6

10.

11.

12.

13.

14.
15.

If I :=[a, b] is aninterval and f : I — R is an increasing function, then the point a [respectively,
b] is an absolute minimum [respectively, maximum] point for fon /. If f is strictly increasing,
then « is the only absolute minimum point for f on /.

If fand g are increasing functions on an interval / C R, show that f + g is an increasing function
on . If fis also strictly increasing on I, then f + g is strictly increasing on 1.

Show that both f(x) := x and g(x) := x — 1 are strictly increasing on / := [0, 1], but that their
product fg is not increasing on /.

Show that if f and g are positive increasing functions on an interval /, then their product fg is
increasing on /.

Show that if I := [a, b] and f : I — R is increasing on /, then f is continuous at « if and only if
f(@) = inf{f(x) : x € (a, b]}.

Let I C R be an interval and let f : I — R be increasing on /. Suppose that ¢ € I is not an
endpoint of 1. Show that fis continuous at ¢ if and only if there exists a sequence (x,,) in / such
that x, < cforn=1,3,5,...;x,>cforn=2,4,6, ... ;and such that ¢ = lim(x,) and
f(e) = im (f(x,)).

Let I/ C R be an interval and let f : I — R be increasing on /. If ¢ is not an endpoint of 7,
show that the jump j(c) of f at ¢ is given by inf{ f(y) — f(x) : x < ¢ <y, x,y € I}.

Let f, g be strictly increasing on an interval / C R and let f(x) > g(x) for all x € I. If
y € f(I) N g(I), show thatf ~'(y) < g~'(y). [Hint: First interpret this statement geometrically.]
Let7:= 1[0, 1]1and letf : I — R be defined by f(x) := x for x rational, and f(x) := 1 — x for x
irrational. Show that f is injective on [ and that f(f(x)) = x for all x € I. (Hence f'is its own
1

inverse function!) Show that f is continuous only at the point x = 5.

Let/:=[a, b] and letf : I — R be continuous on /. If f has an absolute maximum [respectively,
minimum] at an interior point ¢ of /, show that f is not injective on 1.

Let f(x) := x for x € [0, 1], and f(x) := 1 + x for x € (1, 2]. Show that f and f~! are strictly
increasing. Are fand f *' continuous at every point?

Letf : [0, 1] — R be a continuous function that does not take on any of its values twice and with
f(0) < f(1). Show that f is strictly increasing on [0, 1].

Let 4 : [0, 1] — R be a function that takes on each of its values exactly twice. Show that A
cannot be continuous at every point. [Hint: If ¢; < ¢, are the points where £ attains its
supremum, show that ¢, = 0, ¢; = 1. Now examine the points where /4 attains its infimum.]

Let x € R, x > 0. Show that if m, p € Z, n, g € N, and mq = np, then (x'/")" = (x'/‘/)p.

If x € R, x >0, and if r, s € Q, show that x"x* = x"* = x*x" and (x")’ = x" = (x*)".



