Assume Axions I, I, + II for R.
1. Let Ø = X G IR and
$$\bar{u} \in IR$$
. Define
what is meant by that
 $\bar{u} = \sup X$, that is u is the smallest
upper bound $g \times by$ filling
the blanks below
(i) $X \leq \bar{u}$ for $\cdots X$;
(ii) if $IR \neq w < \bar{u}$ then $w \cdots$ for $\cdots X$.
State the negation (i.e. $\bar{u} \neq \sup X$).
(the dy-g supx to dready provides time to the negative
 $n \neq X \in IR$).

Q satisfies I d I but J non-empty A, B E & such such that sup (A+13) exists in Q hur sup A, sup B not exist in Q. $e.g. A:=\{x\in Q: x< \sqrt{2}\}$ $\beta = \{x \in Q : x < 3 - \sqrt{2}\}$ $(so sup (A+B) = sup (x < 3) = 3 \in Q$ $but sup A, sup B \in IR \setminus Q$).

Let f,g = D -> IR be foundtions such that sup { fer): x E D}, and sup [ger): x E D} exist in IR. Show that $\sup \{ f(x) + g(x) : x \in D \} \leq \sup \{ s(x) : x \in D \} + \sup \{ g(x) : x \in D \}$ and provide à counter-example Showing that "<" cannot be replaced by

6. Let
$$a, b, x_1 > 0$$
 (each positive), and
 $x_{n+1} = x_n + \frac{1}{x_n} \quad \forall n \in \mathbb{N}.$
Show :
(i) $a^2 < b^2$ iff (= if and only if) $a < b$.
(ii) $x_{n+1} > x_n$ and $x_{n+1} > x_n^2$, $\forall n \in \mathbb{N}.$
(iii) $x_{n+1}^2 > x_{n+1} \cdot x_n = x_n^2 + 1$ and $x_{n+1}^2 > n$, $\forall n \in \mathbb{N}.$
(iv) requences (x_n^2) and $(x_n) \xrightarrow{w_n} n \notin \mathbb{N} \in \mathbb{N}$.
(iv) requences (x_n^2) and $(x_n) \xrightarrow{w_n} n \notin \mathbb{N} \in \mathbb{N}$.
(iv) requences (x_n^2) and $(x_n) \xrightarrow{w_n} n \notin \mathbb{N} \in \mathbb{N}$.
(iv) requences (x_n^2) and $(x_n) \xrightarrow{w_n} n \notin \mathbb{N} \in \mathbb{N}$.
(iv) requences (x_n^2) and $(x_n) \xrightarrow{w_n} n \notin \mathbb{N} \in \mathbb{N}$.
(iv) requences (x_n^2) and $(x_n) \xrightarrow{w_n} n \notin \mathbb{N}$.
(iv) requences (x_n^2) and $(x_n) \xrightarrow{w_n} n \notin \mathbb{N} \in \mathbb{N}$.
Show the binomial Theorem and Bernoully: Inequality for
 $a,b>0$ ($\forall k, n \in \mathbb{N} \in \mathbb{N} \times \mathbb{N}$) :
(i) $(a+b)^n = \sum_{k=0}^{n} {n \choose k} a^k b^{n-k}$.
(ii) $(1+a)^n \ge \frac{n(n-1)\cdots(n-k+1)}{k!} a^k$.
Discuss the siduation if the possifivity of a, b
is dwopped.

8. √

Let $2(n+1) = 2 + \frac{x_n}{2} \quad \forall n \in \mathbb{N}$. For each of the cases below, show that (x_n) is monotone (either 1 or t, inversing or decreasing not necessarily strictly fir the notations and the two inologies. (i) $x_1 = 1$. (ii) $x_1 = 10$. (Hint: try first few terms to get your conjecture).

qt "Solve" the meqnality system: (#) 4 < |x+2| + |x-1| < 5, that is, let X consist of all x satisfying the above meqnalities, concretely express X. Hint: Try to remove the absolute value signs.

$$\begin{aligned} \varphi(t) &:= |x+z| + |x-1| \quad \forall x \in \mathbb{R} \\ &= \begin{cases} -(x+2) + (1-x) & \forall x \leq -2 \\ 2+x + (1-x) & \forall -2 < x \leq 1 \\ 2+x + (x-1) & 1 < x \end{cases}$$

$$= \begin{cases} -1 - 2\chi & \chi \leq -2 \\ 3 & -2 < \chi \leq 1 \\ 1 + 2\chi & 1 < \chi \end{cases}$$

tenu the "solution set" X
(consisting of all χ satisfy'f
 $4 < \varphi(\chi) \leq 5$)

5

$$X = \{x \le -2 : 4 \le -1 - 2x \le 5\} \cup \\ \cup \{x \ge 1 : 4 \le 1 + 2x \le 5\} \\ = \{x \le -2 : 5 \le -2x \le 6\} - \frac{5}{2} > x \ge 3 \\ \cup \{x \ge 1 : 3 \le 2x \le 4\} = \frac{3}{2} < x \le 2 \\ = [-3, -\frac{5}{2}] \cup (\frac{3}{2}, 2] \\ 10 \text{ Let } \emptyset \neq X \le 1R, \text{ bounded above } . \\ \text{Let } \alpha \in \mathbb{R} \text{ and } \alpha X := \{\alpha x : x \in X\} \text{ Show hat } \\ \text{sup } \alpha X = \alpha \cdot \text{sup } X \quad \forall \alpha \ge 0 \\ \text{inf } (\alpha X) = \alpha \cdot \text{sup } X \quad \forall \alpha < 0 \end{cases}$$