
MATH2040 Homework 2

Reference Solution

1.5.13. Let V be a vector space over a field of characteristic not equal to two.

(a) Let u and v be distinct vectors in V . Prove that { u, v } is linearly independent if and only if { u + v, u − v } is linearly
independent.

(b) Let u, v, and w be distinct vectors in V . Prove that { u, v, w } is linearly independent if and only if { u+ v, u+ w, v + w }
is linearly independent.

Idea: To show that a given (finite) set of vectors is linearly independent, one way is to find constrains on the coefficients for
the linear combinations that gives a zero vector, and argue that the coefficients satisfying these constrains must be all zero.

As we are given another set of vectors known to be linearly independent, we can try to relate the linear combinations with
these vectors, and solving the system with their linear independence should give a set of constrains on the coefficients.

Solution: Since the characteristic of the scalar field F is not 2, 2 = 1 + 1 ̸= 0 and 1
2 exists in F.

(a) • Suppose { u, v } is linearly independent. Then for scalars c, d ∈ F such that cu+ dv = 0, we must have c = d = 0.

Let a, b ∈ F be such that a(u+v)+b(u−v) = 0. Then (a+b)u+(a−b)v = 0. Since { u, v } is linearly independent,

we must have a+ b = a− b = 0. This implies that a = (a+b)+(a−b)
2 = 0, b = (a+b)−(a−b)

2 = 0.

As a, b are arbitrary, { u+ v, u− v } is linearly independent.

• Suppose { u+ v, u− v } is linearly independent.

Let a, b ∈ F be such that au+ bv = 0. Then 0 =
(
a+b
2 + a−b

2

)
u+

(
a+b
2 − a−b

2

)
v = a+b

2 (u+ v) + a−b
2 (u− v). Since

{ u+ v, u− v } is linearly independent, we must have a+b
2 = a−b

2 = 0, so a = a+b
2 + a−b

2 = 0, b = a+b
2 − a−b

2 = 0.

As a, b are arbitrary, { u, v } is linearly independent.

So { u, v } is linearly independent if and only if { u+ v, u− v } is.

(b) • Suppose { u, v, w } is linearly independent.

Let a, b, c ∈ F be such that a(u+v)+b(u+w)+c(v+w) = 0. Then (a+b)u+(a+c)v+(b+c)w = 0. Since { u, v, w }
is linearly independent, we must have a + b = b + c = a + c = 0. This implies that a = (a+b)+(a+c)−(b+c)

2 = 0,

b = (a+b)+(b+c)−(a+c)
2 = 0, c = (a+c)+(b+c)−(a+b)

2 = 0.

As a, b, c are arbitrary, { u+ v, u+ w, v + w } is linearly independent.

• Suppose { u+ v, u+ w, v + w } is linearly independent.

Let a, b, c ∈ F be such that au+ bv + cw = 0. Then

0 =

(
a+ b− c

2
+

a− b+ c

2

)
u+

(
a+ b− c

2
+

−a+ b+ c

2

)
v +

(
a− b+ c

2
+

−a+ b+ c

2

)
w

=
a+ b− c

2
(u+ v) +

a− b+ c

2
(u+ w) +

−a+ b+ c

2
(v + w)

Since { u + v, u + w, v + w } is linearly independent, we must have a+b−c
2 = a−b+c

2 = −a+b+c
2 = 0, so a =

a+b−c
2 + a−b+c

2 = 0, b = a+b−c
2 + −a+b+c

2 = 0, c = a−b+c
2 + −a+b+c

2 = 0.

As a, b, c are arbitrary, { u, v, w } is linearly independent.

So { u, v, w } is linearly independent if and only if { u+ v, u+ w, v + w } is.

Note

Some may consider in both parts that the first half of the proposition is easier than the second half, as in the second half
the combinations of the coefficients (a+b

2 , a−b
2 and a+b−c

2 , a−b+c
2 , −a+b+c

2 ) appear to be pulled out of thin air. However, these

combinations can be readily obtained from the first half: if c = a+ b and d = a− b, then we must have a = c+d
2 and b = c−d

2
(similar for the second part). In fact, you can show the following statement as an (easy) exercise:
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If A ∈ Mn×n(F) is invertible, then the set of distinct vectors { vi : i ∈ { 1, . . . , n } } is linearly independent if

and only if
{ ∑n

j=1 Aijvj : i ∈ { 1, . . . , n }
}

is.

It is obvious why we need the characteristic being different from 2.

Some common errors on this problem include (using the first part as example):

• stating { u, v } is linearly independent because au+ bv = 0 if a = b = 0

• showing that (a+ b)u+ (a− b)v = 0 implies a = b = 0 and so a+ b = a− b = 0, and stating that this alone implies the
linear independence of { u, v }

1.5.15. Let S = { u1, u2, . . . , un } be a finite set of vectors. Prove that S is linearly dependent if and only if u1 = 0 or uk+1 ∈
Span( { u1, u2, . . . , uk } ) for some k (1 ≤ k < n).

Solution:

• Suppose u1 = 0 or uk+1 ∈ Span( { u1, . . . , uk } ) for some k ∈ { 1, . . . , n− 1 }.

– If u1 = 0, we have 0 = u1 ∈ S, and so S is linearly dependent

– If uk+1 ∈ Span( { u1, . . . , uk } ) for some k ∈ { 1, . . . , n−1 }, we have uk+1 =
∑k

i=1 aiui for some scalars a1, . . . , ak
and so

∑k
i=1 aiui − 1 · uk+1 = 0. Since u1, . . . , uk+1 ∈ S and the scalars a1, . . . , ak, 1 are not all zero, S is linearly

dependent.

Thus, S is linearly dependent.

• Suppose S is linearly dependent. Assume that u1 ̸= 0. We will show that uk+1 ∈ Span( { u1, . . . , uk } ) for some
k ∈ { 1, . . . , n− 1 }.
Since u1 ̸= 0, {u1} is linearly independent. Let k ≤ n be the largest integer such that { u1, . . . , uk } is linearly
independent. As {u1} is linearly independent and S = { u1, . . . , un } is linearly dependent, such k exists and 1 ≤ k < n.

By definition, { u1, . . . , uk } is linearly independent and { u1, . . . , uk, uk+1 } is linearly dependent. So there exists

scalars a1, . . . , ak+1 not all zero such that
∑k+1

i=1 aiui = 0.

Suppose ak+1 = 0. Then we have 0 =
∑k+1

i=1 aiui =
∑k

i=1 aiui with a1, . . . , ak being not all zero. This implies that
{ u1, . . . , uk } is linearly dependent. Contradiction arises. So ak+1 ̸= 0.

Hence uk+1 = − 1
ak+1

∑k
i=1 aiui =

∑k
i=1 −

ai

ak+1
ui ∈ Span( { u1, . . . , uk } ).

So S is linearly dependent if and only if u1 = 0 or uk+1 ∈ Span( { u1, u2, . . . , uk } ) for some k ∈ { 1, . . . , n− 1 }.

Note

In view of Question 1.5.16, this also holds for infinite sets.

1.5.18. Let S be a set of nonzero polynomials in P(F) such that no two have the same degree. Prove that S is linearly independent.

Solution: The proposition is trivial if S is empty. Hence in the following proof we will assume that S ̸= ∅.
Let n ∈ Z+, p1, . . . , pn ∈ S be distinct, and c1, . . . , cn ∈ F be such that

∑n
i=1 cipi = 0. Suppose there are some ci ̸= 0. By

removing entries and permuting indices we may assume that ci ̸= 0 for all i ∈ { 1, . . . , n } and 0 ≤ deg p1 ≤ . . . ≤ deg pn.
As the degrees are all distinct, we must have 0 ≤ deg p1 < . . . < deg pn. Then −∞ = deg 0 = deg

∑n
i=1 cipi = deg(cnpn) =

deg pn ≥ 0. Contradiction arises. Hence all ci = 0.

Since n, p1, . . . , pn, c1, . . . , cn are arbitrary, S is linearly independent.

Note

In the proof, we adapt the convention that deg 0 = −∞ but the proof still works if the convention that deg 0 = −1 is used
instead.
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1.6.12. Let u, v, and w be distinct vectors of a vector space V . Show that if { u, v, w } is a basis for V , then { u+ v + w, v + w,w }
is also a basis for V .

Idea: To show that the given set β is a basis of V , we generally need to show

• β is linearly independent;

• β spans the whole space, i.e. Span( β ) = V

However, since we already have a finite basis α of V , we already know dimV (which is | α |). So by the corollary of
Replacement Theorem, as long as | β | = | α |, we only need to show only one of these two conditions.

Solution: Since dimV = | { u, v, w } | = 3 = | { u + v + w, v + w,w } |, it suffices to show that { u + v + w, v + w,w } is
linearly independent.

Let a, b, c be scalars such that a(u+v+w)+ b(v+w)+ cw = 0. Then au+(a+ b)v+(a+ b+ c)w = 0. As { u, v, w } is a basis
of V , it is linearly independent, and so a = a+b = a+b+c = 0. Hence a = 0, b = (a+b)−a = 0, c = (a+b+c)− (a+b) = 0.

As a, b, c are arbitrary, { u+ v + w, v + w,w } is linearly independent. So it is a basis of V .

Note

See also Question 1.5.13.

1.6.15. The set of all n × n matrices having trace equal to zero is a subspace W of Mn×n(F). Find a basis for W . What is the
dimension of W?

Idea: To compute the dimension of a subspace, a simple way is to construct explicitly a basis for this subspace, which may
be found by working on the constrains that define the subspace. The complexity of the proof usually depends on the choice
of the basis.

Solution: We will construct a basis for W . For i, j ∈ { 1, . . . , n } let Eij ∈ Mn×n(F) denote the n × n matrix that the

(i, j)-entry is 1 and all other entries are 0, i.e. (Eij)kl =

{
1 if i = k and j = l

0 otherwise
for k, l ∈ { 1, . . . , n }. It is easy to see that

{ Eij : i, j ∈ { 1, . . . , n } } is a basis of Mn×n(F).
Let A ∈ W ⊆ Mn×n(F). Then A =

∑
i,j∈{ 1,...,n} AijEij with scalars Aij ∈ F. As A ∈ W , 0 = tr(A) =

∑n
i=1 Aii and so

Ann = −
∑n−1

i=1 Aii. This implies that

A =
∑
i ̸=j

AijEij +

n∑
i=1

AiiEii =
∑
i ̸=j

AijEij +

n−1∑
i=1

AiiEii −

(
n−1∑
i=1

Aii

)
Enn =

∑
i ̸=j

AijEij +

n−1∑
i=1

Aii(Eii − Enn) ∈ Span( β )

with β = { Eij : i ̸= j } ∪ { Eii − Enn : i ∈ { 1, . . . , n− 1 } }. As A is arbitrary, W ⊆ Span( β ). It is also easy to see that
β ⊆ W , so Span( β ) ⊆ W , which implies that β spans W .

It then suffices to show that β is linearly independent. Let Aij ∈ F for i, j ∈ { 1, . . . , n } with i ̸= j and Bi ∈ F for

i ∈ { 1, . . . , n − 1 } be scalars such that
∑

i ̸=j AijEij +
∑n−1

i=1 Bi(Eii − Enn) = 0n×n. Then
∑

i̸=j AijEij +
∑n−1

i=1 BiEii −(∑n−1
i=1 Bi

)
Enn = 0n×n. Since { Eij : i, j ∈ { 1, . . . , n } } is a basis of Mn×n(F), we have Aij = 0 for i ̸= j and Bi = 0 for

i ∈ { 1, . . . , n− 1 }. This implies that β is linearly independent.

Since β is linearly independent and spans W , β is a basis of W , and so dim(W ) = | β | = n2 − 1.

1.6.23. Let v1, v2, . . . , vk, v be vectors in a vector space V , and defineW1 = Span( { v1, v2, . . . , vk } ), andW2 = Span( { v1, v2, . . . , vk, v } ).

(a) Find necessary and sufficient conditions on v such that dim(W1) = dim(W2).

(b) State and prove a relationship involving dim(W1) and dim(W2) in the case that dim(W1) ̸= dim(W2).
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Solution:

(a) The sufficient and necessary condition is that v ∈ W1.

Since { v1, . . . , vk } ⊆ { v1, . . . , vk, v }, we always have W1 = Span( { v1, v2, . . . , vk } ) ⊆ Span( { v1, v2, . . . , vk, v } ) =
W2.

• Suppose dim(W1) = dim(W2). Since W1 ⊆ W2, we have W1 = W2, and thus v ∈ W2 = W1.

• Suppose v ∈ W1. The { v1, . . . , vk, v } ⊆ W1, so W2 = Span( { v1, v2, . . . , vk, v } ) ⊆ W1. So W1 = W2 and thus
dim(W1) = dim(W2).

Hence dim(W1) = dim(W2) if and only if v ∈ W1.

(b) If dim(W1) ̸= dim(W2), we have dim(W2) = dim(W1) + 1.

Suppose dim(W1) ̸= dim(W2). Then by the previous part, v /∈ W1. Let β ⊆ W1 be a basis of W1. Then β is linearly
independent. As v /∈ W1 = Span( β ), β∪{v} is also linearly independent. Moreover, W2 = Span( { v1, v2, . . . , vk, v } ) =
Span( { v1, v2, . . . , vk } ) + Span( { v } ) = W1 +Span( { v } ) = Span( β ) + Span( { v } ) = Span( β ∪ {v} ), so β ∪ {v}
spans W2. Thus β ∪ {v} is a basis of W2, and so dim(W2) = | β ∪ {v} | = | β |+ 1 = dim(W1) + 1.

Note

Stating only dim(W1) < dim(W2), dim(W1) ≤ dim(W2), dim(W1) ≤ k, dim(W2) ≤ k + 1, or any combination of
dim(W1),dim(W2) being an integer will be counted as incorrect answers as these are too trivial.

1.6.26. For a fixed a ∈ R, determine the dimension of the subspace of Pn(R) defined by { f ∈ Pn(R) : f(a) = 0 }.

Solution: Denote the subspace as V .

We first consider what property polynomials in V has.

Let f ∈ V . Then f(a) = 0, and so by factor theorem / remainder theorem, f(x) = (x−a)g(x) for some polynomial g ∈ P(R).
Since deg f ≤ n, we must have deg g ≤ deg f − 1 ≤ n− 1 and so g ∈ Pn−1(R). This implies that g(x) =

∑n−1
i=0 cix

i for some

c1, . . . , cn−1 ∈ R, and f(x) = (x − a)g(x) =
∑n−1

i=0 ci(x − a)xi ∈ Span( β ) with β =
{
(x − a), (x − a)x, . . . , (x − a)xn−1

}
being a set of nonzero polynomials.

Furthermore, for each g ∈ β we have g(a) = 0, so β ⊆ V and thus Span( β ) ⊆ V , which implies that β spans V .

It remains to show that β is linearly independent, as this would implies that dim(V ) = | β | = n. However, note that
deg((x−a)xi) = i+1 for each i ∈ { 0, . . . , n−1 }, and so no two polynomials in β have the same degree. By Question 1.5.18,
β is linearly independent.

Thus dim(V ) = n.

Note

Another popular choice for basis of V is
{
xi − ai : i ∈ { 1, . . . , n }

}
, for which the proof does not require using factor

theorem.

1.6.29. (a) Prove that if W1 and W2 are finite-dimensional subspaces of a vector space V , then the subspace W1 + W2, is finite-
dimensional, and dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

(b) Let W1 and W2 be finite-dimensional subspaces of a vector space V , and let V = W1+W2. Deduce that V is the direct sum
of W1 and W2 if and only if dim(V ) = dim(W1) + dim(W2).

Solution:

(a) Since W1,W2 ⊆ V , we have W1 +W2 ⊆ V and W1 ∩W2 ⊆ V . As V is finite-dimensional, so are W1 +W2 and W1 ∩W2.

let γ ⊆ W1 ∩W2 be a basis of W1 ∩W2. By Extension Theorem, we may extend γ to a basis β1 = γ ∪ α1 of W1 and a
basis β2 = γ ∪ α2 of W2 with α1 ⊆ W1, α2 ⊆ W2 respectively and γ ∩ α1 = γ ∩ α2 = ∅.
Suppose α1 ∩ α2 ̸= ∅. Then there exists v ∈ α1 ∩ α2 ⊆ W1 ∩ W2 = Span( γ ). This implies that γ ∪ {v} is linearly
dependent, and so is β1 = γ∪α1 ⊇ γ∪{v} (and equivalently β2). Contradiction arises. Hence α1∩α2 = ∅. This implies
that γ, α1, α2 are disjoint.
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To show the proposition, we will show that β = γ ∪ α1 ∪ α2 is a basis of W1 +W2.

Since β = γ ∪ α1 ∪ α2 = (γ ∪ α1)∪ (γ ∪ α2) = β1 ∪ β2, we have W1 +W2 = Span( β1 ) + Span( β2 ) = Span( β1 ∪ β2 ) =
Span( β ). So β spans W1 +W2.

Since W1,W2,W1 ∩ W2 are all finite-dimensional, we may assume that α1 = { w1, . . . , wn }, α2 = { w′
1, . . . , w

′
m },

γ = { v1, . . . , vp } for some n,m, p ∈ N. Let a1, . . . , an, a′1, . . . , a′m, b1, . . . , bp ∈ F be such that
∑n

i=1 aiwi +
∑m

i=1 a
′
iw

′
i +∑p

i=1 bivi = 0. Then
∑n

i=1 aiwi +
∑p

i=1 bivi = −
∑m

i=1 a
′
iw

′
i ∈ Span( β1 ) ∩ Span( α2 ) ⊆ W1 ∩ W2, so

∑n
i=1 aiwi +∑p

i=1 bivi =
∑p

i=1 civi for some scalars c1, . . . , cp. This implies that
∑n

i=1 aiwi +
∑p

i=1(bi − ci)vi = 0. By the linear
independence of β1, a1 = . . . = an = 0 and so

∑m
i=1 a

′
iw

′
i +

∑p
i=1 bivi = 0. By the linear independence of β2,

a′1 = . . . = a′m = b1 = . . . = bp = 0. This implies that β is linearly independent.

In particular, β is a basis of W1 +W2.

Thus, we have dim(W1+W2) = | β | = | γ |+ | α1 |+ | α2 | = dim(W1∩W2)+(dim(W1)−dim(W1∩W2))+(dim(W2)−
dim(W1 ∩W2)) = dim(W1) + dim(W2)− dim(W1 ∩W2).

(b) Suppose V = W1 ⊕W2. Then W1 +W2 = V and W1 ∩W2 = {0}. So by the previous part, dim(V ) = dim(W1 +W2) =
dim(W1) + dim(W2)− dim(W1 ∩W2) = dim(W1) + dim(W2).

Suppose dim(W1)+ dim(W2) = dim(V ). Then by the previous part, dim(V ) = dim(W1 +W2) = dim(W1)+ dim(W2)−
dim(W1∩W2) = dim(V )−dim(W1∩W2). This implies that dim(W1∩W2) = 0 and so W1∩W2 = {0}. As W1+W2 = V ,
we have V = W1 ⊕W2.

Therefore V = W1 ⊕W2 if and only if dim(V ) = dim(W1) + dim(W2).

Note

Please send us an email if you find an easy proof on part (a) that does not involve solving for the witnessing linear combination.

Generalizing part (a) to 3 (or more) subspaces is an interesting exercise, and we encourage you to work on it.

The argument for part (a) still works (with appropriate modifications) when V is not necessarily finite-dimensional, although
you then only have dim(W1 +W2) + dim(W1 ∩W2) = dim(W1) + dim(W2).

1.6.30. Let

V = M2×2(F), W1 =

{ (
a b
c a

)
∈ V : a, b, c ∈ F

}
and

W2 =

{ (
0 a
−a b

)
∈ V : a, b ∈ F

}
Prove that W1 and W2 are subspaces of V , and find the dimensions of W1, W2, W1 +W2, and W1 ∩W2.

Solution:

• It is easy to see that the zero matrix

(
0 0
0 0

)
is in W1 and in W2.

– Let A1, A2 ∈ W1 and γ ∈ F. Then A1 =

(
a1 b1
c1 a1

)
, A2 =

(
a2 b2
c2 a2

)
for some a1, a2, b1, b2, c1, c2 ∈ F. So

W1+W2 =

(
a1 + a2 b1 + b2
c1 + c2 a1 + a2

)
∈ W1 and γA1 =

(
γa1 γb1
γc1 γa1

)
∈ W1. As A1, A2, γ is arbitrary, W1 is a subspace.

– Let A1, A2 ∈ W2 and γ ∈ F. Then A1 =

(
0 a1

−a1 b1

)
, A2 =

(
0 a2

−a2 b2

)
for some a1, a2, b1, b2 ∈ F. So W1 +W2 =(

0 a1 + a2
−(a1 + a2) b1 + b2

)
∈ W2 and γA1 =

(
0 γa1

−γa1 γb1

)
∈ W2. As A1, A2, γ is arbitrary, W2 is a subspace.

• To find the dimensions of the subspaces, we find a basis for each of them.

– Let β1 =

{ (
1 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

) }
. Then β1 ⊆ W1, so Span( β1 ) ⊆ W1.

Let A ∈ W1. Then A =

(
a b
c a

)
= a ·

(
1 0
0 1

)
+ b ·

(
0 1
0 0

)
+ c ·

(
0 0
1 0

)
∈ Span( β1 ). As A is arbitrary,

Span( β1 ) = W1.
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Let a, b, c ∈ F be such that a ·
(
1 0
0 1

)
+ b ·

(
0 1
0 0

)
+ c ·

(
0 0
1 0

)
=

(
0 0
0 0

)
. Then

(
a b
c a

)
=

(
0 0
0 0

)
and so

a = b = c = 0. This implies that β1 is linearly independent.

Hence β1 is a basis of W1 and so dim(W1) = | β1 | = 3.

– Let β2 =

{ (
0 1
−1 0

)
,

(
0 0
0 1

) }
. Then β2 ⊆ W2, so Span( β2 ) ⊆ W2.

Let A ∈ W2. Then A =

(
0 a
−a b

)
= a ·

(
0 1
−1 0

)
+ b ·

(
0 0
0 1

)
∈ Span( β2 ). As A is arbitrary, Span( β2 ) = W2.

Let a, b ∈ F be such that a ·
(

0 1
−1 0

)
+ b ·

(
0 0
0 1

)
=

(
0 0
0 0

)
. Then

(
0 a
−a b

)
=

(
0 0
0 0

)
and so a = b = 0. This

implies that β2 is linearly independent.

Hence β2 is a basis of W2 and so dim(W2) = | β2 | = 2.

– It is easy to see that W1 +W2 ⊆ V .

Let A ∈ V . Then A =

(
a b
c d

)
for some a, b, c, d ∈ F. Then A =

(
a 0

c+ b a

)
+

(
0 b
−b d− a

)
with

(
a 0

c+ b a

)
∈

W1,

(
0 b
−b d− a

)
∈ W2, so A ∈ W1 + W2. As A is arbitrary, V ⊆ W1 + W2. Hence V = W1 + W2 and so

dim(W1 +W2) = dim(V ) = 4.

– Let A ∈ W1 ∩W2. Then A =

(
a b
c a

)
=

(
0 d
−d e

)
for some a, b, c, d, e ∈ F. So a = e = 0, b = d, c = −d, hence

A =

(
0 b
−b 0

)
∈ Span

( { (
0 1
−1 0

) } )
.

It is easy to see that

(
0 1
−1 0

)
∈ W1 and

(
0 1
−1 0

)
∈ W2, so Span

( { (
0 1
−1 0

) } )
∈ W1 ∩W2. This implies

that Span

( { (
0 1
−1 0

) } )
= W1 ∩W2.

As

(
0 1
−1 0

)
is not the zero matrix,

{ (
0 1
−1 0

) }
is linearly independent and so is a basis of W1 ∩ W2. Thus

dim(W1 ∩W2) = 1

2.1.5. Prove that T is a linear transformation, and find bases for both N ( T ) and R ( T ). Then compute the nullity and rank of T ,
and verify the dimension theorem. Finally, use the appropriate theorems in this section to determine whether T is one-to-one or
onto.

T : P2(R) → P3(R) defined by T (f(x)) = xf(x) + f ′(x)

Solution:

(a) Let f, g ∈ P2(R) and α ∈ R. Then

• T (f+g) = x(f+g)(x)+(f+g)′(x) = x(f(x)+g(x))+(f ′(x)+g′(x)) = (xf(x)+f ′(x))+(xg(x)+g′(x)) = T (f)+T (g)

• T (αf) = x(αf)(x) + (αf)′(x) = α(xf(x) + f ′(x)) = αT (f)

As f, g, α are arbitrary, T is linear.

(b) Let f ∈ N ( T ) ⊆ P2(R). Then f = a+ bx+ cx2 for some a, b, c ∈ P2(R). Since f ∈ N ( T ), 0 = T (f) = xf(x)+ f ′(x) =
x(a + bx + cx2) + (b + 2cx) = b + (a + 2c)x + bx2 + cx3, so b = a + 2c = c = 0 and thus a = b = c = 0, f = 0. This
implies that N ( T ) = {0} and a basis for N ( T ) is ∅.
Let β =

{
T (1), T (x), T (x2)

}
=
{
x, 1 + x2, 2x + x3

}
⊆ P3(R). Since β ⊆ R ( T ), we have Span( β ) ⊆ R ( T ). Also,

for each f ∈ P2(R), we have f = a+ bx+ cx2 for some a, b, c ∈ R and so T (f) = aT (1) + bT (x) + cT (x2) ∈ Span( β ).
As f ∈ P2(R) is arbitrary, R ( T ) ⊆ Span( β ). This implies that β spans R ( T ).

Since β does not contain the zero polynomial and no two polynomials in β has the same degree, by the result of Question
1.5.18, β is linearly independent. Hence β is a basis of R ( T ).

(c) Since N ( T ) = {0}, nullity T = dim(N ( T )) = 0.

Since β is a basis of R ( T ), rankT = | β | = 3.
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(d) By the previous part, nullity T + rankT = 0+ 3 = 3 and dim(P2(R)) = 3, so nullity T + rankT = dim(P2(R)), which is
consistent with the dimension theorem.

(e) Since N ( T ) = {0}, T is one-to-one.

Since dim(R ( T )) = 3 < 4 = dim(P3(R)), we have R ( T ) ̸= P3(R) and so T is not onto.

Note

You can also see that T is one-to-one by observing that deg T (f) = 1 + deg f for nonzero polynomial f .

2.1.14. Let V and W be vector spaces and T : V → W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W .

(b) Suppose that T is one-to-one and that S is a subset of V . Prove that S is linearly independent if and only if T (S) is linearly
independent.

(c) Suppose β = { v1, v2, . . . , vn } is a basis for V and T is one-to-one and onto. Prove that T (β) = { T (v1), T (v2), . . . , T (vn) }
is a basis for W .

Solution:

(a) Suppose T is one-to-one. Let S ⊆ V be a linearly independent set. We want to show that T (S) is also linearly
independent.

If T (S) = ∅, the proposition is trivial, so we may assume that T (S) ̸= ∅. Let n ∈ Z+, w1, . . . , wn ∈ T (S) be distinct, and
c1, . . . , cn ∈ F be such that

∑n
i=1 ciwi = 0. Since wi ∈ T (S) for all i, there exists v1, . . . , vn ∈ S such that wi = T (vi)

for all i. So 0 =
∑n

i=1 ciwi =
∑n

i=1 ciT (vi) = T (
∑n

i=1 civi). Since T is one-to-one,
∑n

i=1 civi = 0. Since S is linearly
independent, c1 = . . . = cn = 0. This implies that T (S) is linearly independent.

Suppose T maps linearly independent subsets of V to linearly independent subsets of W . Let v ∈ N ( T ). If v ̸= 0, we
must have that {v} is a linearly independent subset of V , and so T{v} = {T (v)} = {0} is also linearly independent,
which is a contradiction. So v = 0. This implies that N ( T ) = {0} and so T is one-to-one.

(b) Suppose S is linearly independent. By the previous part, T (S) is linearly independent.

Suppose T (S) is linearly independent. The proposition is again trivial if S = ∅. So we may assume that S ̸= ∅. As T (S)
is linearly independent, we must have 0 /∈ T (S).

Let n ∈ Z+, v1, . . . , vn be district, c1, . . . , cn be scalars such that
∑n

i=1 civi = 0. Then 0 = T (0) = T (
∑n

i=1 civi) =∑n
i=1 ciT (vi). As v1, . . . , vn are distinct and T is one-to-one, T (v1), . . . , T (vn) ∈ T (S) are also nonzero distinct. Since

T (S) is linearly independent, this implies that c1 = . . . = cn = 0. As n, v1, . . . , vn, c1, . . . , cn are arbitrary, this implies
that S is linearly independent.

Therefore, S is linearly independent if and only if T (S) is.

(c) Since β is a basis of V , it is linearly independent. By the previous part, T (β) is also linearly independent. To show that
T (β) is a basis of W , it then suffices to show that T (β) spans W . Since β ⊆ V , we trivially have T (β) ⊆ T (V ) ⊆ W
and so Span( T (β) ) ⊆ W .

Let w ∈ W . As T is onto, there exists v ∈ V such that w = T (v). As β is a basis of V , there exists scalars c1, . . . , cn such
that v =

∑n
i=1 civi. So w = T (v) = T (

∑n
i=1 civi) =

∑n
i=1 ciT (vi) ∈ Span( T (β) ). As w is arbitrary, W ⊆ Span( T (β) ).

So T (β) spans W .

Therefore T (β) is a basis of W .

2.1.18. Give an example of a linear transformation T : R2 → R2 such that N ( T ) = R ( T ).

Solution: Let A =

(
0 1
0 0

)
∈ M2×2(R) and define T : R2 → R2 by T (x) = Ax for x ∈ R2. It is easy to see that T is linear,

and N ( T ) = Span

( { (
1
0

) } )
= R ( T ).

Note

R ( T ) = N ( T ) implies that T 2 = 0. Note that T ̸= 0.
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2.1.21. Let V be the vector space of sequences. Define the functions T,U : V → V by

T (a1, a2, . . .) = (a2, a3, . . .) and U(a1, a2, . . .) = (0, a1, a2, . . .)

(a) Prove that T and U are linear.

(b) Prove that T is onto, but not one-to-one.

(c) Prove that U is one-to-one, but not onto.

Solution:

(a) Let a = (a1, a2, . . .), b = (b1, b2, . . .) ∈ V and γ ∈ F be a scalar. Then

• T (a+ b) = T (a1 + b1, a2 + b2, . . .) = (a2 + b2, a3 + b3, . . .) = (a2, a3, . . .) + (b2, b3, . . .) = T (a) + T (b)

• U(a+ b) = U(a1 + b1, a2 + b2, . . .) = (0, a1 + b1, a2 + b2, . . .) = (0, a1, a2, . . .) + (0, b1, b2, . . .) = U(a) + U(b)

• T (γa) = T (γa1, γa2, . . .) = (γa2, γa3, . . .) = γ(a2, a3, . . .) = γT (a)

• U(γa) = U(γa1, γa2, . . .) = (0, γa1, γa2, . . .) = γ(0, a1, a2, . . .) = γU(a)

As a, b, γ are arbitrary, T,U are linear

(b) Let a = (a1, a2, . . .) ∈ V . Then a = (a1, a2, . . .) = T (0, a1, a2, . . .) ∈ R ( T ). As a is arbitrary, this implies that T is
onto.

Since T (0, 0, 0, . . .) = (0, 0, . . .) = T (1, 0, 0, . . .) and (0, 0, 0, . . .) ̸= (1, 0, 0, . . .), T is not one-to-one.

(c) Let a = (a1, a2, . . .) ∈ N ( U ). Then (0, 0, 0, . . .) = 0 = U(a1, a2, . . .) = (0, a1, a2, . . .). This implies that ai = 0 for all i.
As a is arbitrary and that U is linear, this implies that U is one-to-one.

Since U(a1, a2, . . .) = (0, a1, a2, . . .) ̸= (1, 0, 0, . . .) for all (a1, a2, . . .) ∈ V , (1, 0, 0, . . .) /∈ R ( U ) and so U is not onto.

Note

TU = IdV is the identity map on V but UT ̸= IdV .

2.1.22. Let T : R → R be linear. Show that there exist scalars a, b, and c such that T (x, y, z) = ax + by + cz for all (x, y, z) ∈ R3.
Can you generalize this result for T : Fn → F? State and prove an analogous result for T : Fn → Fm.

Solution:

(a) Let a = T (1, 0, 0), b = T (0, 1, 0), c = T (0, 0, 1) ∈ R. Then for all (x, y, z) ∈ R3, we have (x, y, z) = x(1, 0, 0) + y(0, 1, 0) +
z(0, 0, 1) and so T (x, y, z) = T (x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)) = xT (1, 0, 0) + yT (0, 1, 0) + zT (0, 0, 1) = ax+ by + cz.

(b) For linear T : Fn → F, there exists a1, . . . , an ∈ F such that T (x1, . . . , xn) =
∑n

i=1 aixi for all (x1, . . . , xn) ∈ Fn.

(c) For linear T : Fn → Fm, there exists aij ∈ F for i ∈ { 1, . . . , n }, j ∈ { 1, . . . ,m } such that T (x1, . . . , xn) =
(
∑n

i=1 a1ixi, . . . ,
∑n

i=1 amixi ) for all (x1, . . . , xn) ∈ Fn.

For each i ∈ { 1, . . . , n } let ei ∈ Fn be the vector where the ith entry is 1 and all other entries are 0, i.e. (ei)j ={
1 if i = j

0 otherwise
for all i ∈ { 1, . . . , n }. It is easy to see that { e1, . . . , en } is a basis of Fn. For each i ∈ { 1, . . . , n }

let ai1, . . . , aim ∈ F be such that T (ei) = (ai1, . . . , aim). Then for all (x1, . . . , xn) ∈ Fn we have T (x1, . . . , xn) =
T (
∑n

i=1 xiei) =
∑n

i=1 xiT (ei) =
∑n

i=1 xi(ai1, . . . , aim) = (
∑n

i=1 a1ixi, . . . ,
∑n

i=1 amixi ).

Note

Part (c) is an easy generalization of part (b) if you have shown the following lemma: if U, V,W are vector spaces over the
same scalar field, πU : U×W → U , πW : U×W → W are the projections to the first component and to the second component
respectively, then T : V → U ×W is linear if and only if both πUT, πWT are.

2.1.37. Prove that if V and W are vector spaces over the field of rational numbers, then any additive function from V into W is a
linear transformation.
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Solution: Let T : V → W be an additive function. By definition, to show that T is linear, it suffices to show that T is
homogeneous, that is, T (qv) = qT (v) for all q ∈ Q.

We first consider what property an additive map has. Fix v ∈ V .

Trivially, T (1 ·v) = T (v) = 1 ·T (v). Suppose we have T (k ·v) = k ·T (v) for some k ∈ Z+. Then T ((k+1) ·v) = T (k ·v+1 ·v) =
T (k · v) + T (1 · v) = k · T (v) + 1 · T (v) = (k + 1) · T (v). So by induction, T (n · v) = n · T (v) for all n ∈ Z+.

As T (v) = T (v + 0V ) = T (v) + T (0V ), we have T (0V ) = 0W = 0 · T (v). Also, for all n ∈ Z+, 0W = T (0V ) = T ( (n · v) +
((−n) · v) ) = T (n · v) + T ((−n) · v) = n · T (v) + T ((−n) · v), we have T ((−n) · v) = −(n · T (v)) = (−n) · T (v).
Thus, T (n · v) = n · T (v) for all n ∈ Z. As v is arbitrary, this holds for all v ∈ V . Thus for all n ∈ Z+ and all v ∈ V ,
T (v) = T

(
n · ( 1n · v)

)
= n · T ( 1n · v) and so T ( 1n · v) = 1

n · T (v).
Let q ∈ Q. Then there exists n ∈ Z, m ∈ Z+ such that q = n

m . Then for all v ∈ V , T (q · v) = T ( n
m · v) = T

(
n · ( 1

m · v)
)
=

n · T ( 1
m · v) = (n · 1

m ) · T (v) = q · T (v).
As q is arbitrary, T is homogeneous and so is linear.

Note

This proposition holds as Q is the field of fraction of N, and additivity implies the homogeneity on N. See also the next
question (Question 2.1.38).

2.1.38. Let T : C → C be the function defined by T (z) = z. Prove that T is additive but not linear.

Solution: Let x, y ∈ C. Then T (x+ y) = x+ y = x+ y = T (x) + T (y). As x, y are arbitrary, T is additive.

As T (1) = 1 = 1 and T (i) = i = −i, we have T (i · 1) = T (i) = −i ̸= i = i · T (1). So T is not linear.

Note

Note that T is R-linear but not C-linear, whereas C is (usually) equipped with C-scalars. If C is equipped with R-scalars
(that is, as a real vector space instead of a complex vector space, see Question 1.6.28), T would be linear.

Practice Problems

1.5.1. Label the following statements as true or false.

(a) If S is a linearly dependent set, then each vector in S is a linear combination of other vectors in S.

(b) Any set containing the zero vector is linearly dependent.

(c) The empty set is linearly dependent.

(d) Subsets of linearly dependent sets are linearly dependent.

(e) Subsets of linearly independent sets are linearly independent.

(f) If a1x1 + a2x2 + . . .+ anxn = 0 and x1, x2, . . . , xn are linearly independent, then all the scalars ai are zero.

Solution:

(a) False

(b) True

(c) False. You can verify that there is no nontrivial linear relation between elements of the empty set (as there is no element
in the empty set and so no such linear relation exists).

(d) False

(e) True

(f) True

1.5.2. Determine whether the following sets are linearly dependent. or linearly independent.
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(a)

{ (
1 −3
−2 4

)
,

(
−2 6
4 −8

) }
in M2×2(R)

(b)

{ (
1 −2
−1 4

)
,

(
−1 1
2 −4

) }
in M2×2(R)

(c)
{
x3 − x, 2x2 + 4,−2x3 + 3x2 + 2x+ 6

}
in P3(R)

(d) { (1,−1, 2), (1,−2, 1), (1, 1, 4) } in R3

(e) { (1,−1, 2), (2, 0, 1), (−1, 2,−1) } in R3

(f)

{ (
1 0
−2 1

)
,

(
0 −1
1 1

)
,

(
−1 2
1 0

)
,

(
2 1
−4 4

) }
in M2×2(R)

(g)

{ (
1 0
−2 1

)
,

(
0 −1
1 1

)
,

(
−1 2
1 0

)
,

(
2 1
2 −2

) }
in M2×2(R)

(h)
{
x4 − x3 + 5x2 − 8x+ 6,−x4 + x3 − 5x2 + 5x− 3, x4 + 3x2 − 3x+ 5, 2x4 + 3x3 + 4x2 − x+ 1, x3 − x+ 2

}
in P4(R)

(i)
{
x4 − x3 + 5x2 − 8x+ 6,−x4 + x3 − 5x2 + 5x− 3, x4 + 3x2 − 3x+ 5, 2x4 + x3 + 4x2 + 8x

}
in P4(R)

Solution: For the sake of brevity, we will not give the detail proofs for the reasoning. Readers are encouraged to work out
the details.

(a) Linearly dependent: 2 ·
(

1 −3
−2 4

)
+ 1 ·

(
−2 6
4 −8

)
= 0

(b) Linearly independent

(c) Linearly dependent: 4 · (x3 − x)− 3 · (2x2 + 4) + 2 · (−2x3 + 3x2 + 2x+ 6) = 0

(d) Linearly dependent: 3 · (1,−1, 2)− 2 · (1,−2, 1)− 1 · (1, 1, 4) = 0

(e) Linearly independent

(f) Linearly dependent: 3 ·
(

1 0
−2 1

)
+ 1 ·

(
0 −1
1 1

)
+ 1 ·

(
−1 2
1 0

)
− 1 ·

(
2 1
−4 4

)
= 0

(g) Linearly independent

(h) Linearly independent

(i) Linearly dependent: 4·(x4−x3+5x2−8x+6)+3·(−x4+x3−5x2+5x−3)−3·(x4+3x2−3x+5)+1·(2x4+x3+4x2+8x) = 0

1.5.8. Let S = { (1, 1, 0), (1, 0, 1), (0, 1, 1) } be a subset of the vector space F3.

(a) Prove that if F = R, then S is linearly independent.

(b) Prove that if F has characteristic 2, then S is linearly dependent.

Solution:

(a) Let a, b, c ∈ R such that a · (1, 1, 0) + b · (1, 0, 1) + c · (0, 1, 1) = 0R3 = (0, 0, 0). Then (0, 0, 0) = (a + b, a + c, b + c) and
so a + b = a + c = b + c = 0. Thus 2 · (a + b + c) = 0 and so a + b + c = 0. Hence a = (a + b + c) − (a + b) = 0,
b = (a+ b+ c)− (a+ c) = 0, c = (a+ b+ c)− (a+ b) = 0. This implies that S is R-linearly independent.

(b) Since F has characteristic 2, 1+1 = 0. As 1 ̸= 0 and 1·(1, 1, 0)+1·(1, 0, 1)+1·(0, 1, 1) = (1+1, 1+1, 1+1) = (0, 0, 0) = 0F3 ,
S is linearly dependent.

1.5.9. Let u and v be distinct vectors in a vector space V . Show that { u, v } is linearly dependent if and only if u or v is a multiple
of the other.

Solution:

(a) Suppose { u, v } is linearly dependent. Then there exists scalars a, b not all zero such that au+ bv = 0. As a, b are not
all zero, at least one of them is nonzero. Without loss of generality we may assume that a ̸= 0. Then u+ b

a · v = 0 and

so u = − b
a · v is a scalar multiple of v.
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(b) Suppose u or v is a multiple of the other. Without loss of generality we may assume that u is a multiple of v. Then
u = λv for some scalar λ, and so 1 · u − λ · v = 0. As 1 ̸= 0, the scalars are not all zero, and so { u, v } is linearly
dependent.

Therefore, { u, v } is linearly dependent if and only if u or v is a scalar multiple of the other.

1.5.16. Prove that a set S of vectors is linearly independent if and only if each finite subset of S is linearly independent.

Solution: Instead of the original proposition, we will prove the following logically equivalent statement:

A set S is linearly dependent if and only if some finite subset of S is

Suppose S is linearly dependent. Then there exists n ∈ N+, v1, . . . , vn ∈ S distinct, and scalars c1, . . . , cn ∈ F not all zero
such that

∑n
i=1 civi = 0. This implies that the finite subset { v1, . . . , vn } ⊆ S is linearly dependent.

Suppose S has a finite linearly dependent subset S′. Trivially, S′ ̸= ∅. We may then assume that S′ = { v1, . . . , vn } with
v1, . . . , vn distinct. Then

∑n
i=1 civi = 0 for some scalars c1, . . . , cn not all zero. As vi ∈ S′ ⊆ S for all i ∈ { 1, . . . , n }, this

implies that S is also linearly dependent.

Hence, S is linearly dependent if and only if some finite subset of S is. Equivalently, S is linearly independent if and only if
every finite subset of S is.

Note

If S itself is a finite set, this proposition does not give us anything new.

1.5.17. Let M be a square upper triangular matrix with nonzero diagonal entries. Prove that the columns of M are linearly
independent.

Solution: Let the column vectors be v1, . . . , vn ∈ Fn such that M =
[
v1 . . . vn

]
. By assumption, Mii = (vi)i ̸= 0 and

Mji = (vi)j = 0 for i ∈ { 1, . . . , n }, j ∈ { i+ 1, . . . , n }.

Let c1, . . . , cn ∈ F such that
∑n

i=1 civi = 0. Then Mc = 0 with c =
(
c1 . . . cn

)T ∈ Fn. Since M is upper triangular,
detM =

∏n
i=1 Mii =

∏n
i=1(vi)i ̸= 0. This implies that M is invertible, and so c = 0. Hence c1 = . . . = cn = 0. This implies

that v1, . . . , vn are linearly independent.

1.5.19. Prove that if { A1, A2, . . . , Ak } is a linearly independent subset of Mn×n(F), then
{
AT

1 , A
T
2 , . . . , A

T
k

}
is also linearly inde-

pendent.

Solution: Let c1, . . . , ck ∈ F be such that
∑k

i=1 ciA
T
i = 0n×n. Then 0n×n = 0Tn×n =

(∑k
i=1 ciA

T
i

)T
=
∑k

i=1 ci(A
T
i )

T =∑k
i=1 ciAi. Since { A1, A2, . . . , Ak } is linearly independent, c1 = . . . = ck = 0. This implies that

{
AT

1 , A
T
2 , . . . , A

T
k

}
is also

linearly independent.

1.5.20. Let f, g ∈ F(R,R) be the functions defined by f(t) = ert and g(t) = est, where r ̸= s. Prove that f and g are linearly
independent in F(R,R).

Solution: Let a, b ∈ R be such that af + bg = 0. Then for all t ∈ R, 0 = af(t) + bg(t) = aert + bert. In particular,

0 = a+ b with t = 0

0 = aer + bes with t = 1

Since r ̸= s, er ̸= es. Thus solving the linear system we obtain a = b = 0. This implies that f, g are linearly independent.

Note

The proposition can also be shown by noting that the Wronskian W (f, g) =

∣∣∣∣f g
f ′ g′

∣∣∣∣ = ∣∣∣∣ ert est

rert sest

∣∣∣∣ = (s − r)e(r+s)t is not

identically zero.
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1.6.1. Label the following statements as true or false.

(a) The zero vector space has no basis.

(b) Every vector space that is generated by a finite set has a basis.

(c) Every vector space has a finite basis.

(d) A vector space cannot have more than one basis.

(e) If a vector space has a finite basis, then the number of vectors in every basis is the same.

(f) The dimension of Pn(F) is n.
(g) The dimension of Mm×n(F) is m+ n.

(h) Suppose that V is a finite-dimensional vector space, that S1 is a linearly independent subset of V , and that S2 is a subset
of V that generates V . Then S1 cannot contain more vectors than S2.

(i) If S generates the vector space V , then every vector in V can be written as a linear combination of vectors in S in only one
way.

(j) Every subspace of a finite-dimensional space is finite-dimensional.

(k) If V is a vector space having dimension n, then V has exactly one subspace with dimension 0 and exactly one subspace with
dimension n.

(l) If V is a vector space having dimension n, and if S is a subset of V with n vectors, then S is linearly independent if and
only if S spans V .

Solution:

(a) False

(b) True

(c) False

(d) False

(e) True

(f) False. It is n+ 1

(g) False. It is m · n

(h) True

(i) False. This only holds if S is linearly independent

(j) True

(k) True

(l) True

1.6.3. Determine which of the following sets are bases for P2(R).
(a)

{
− 1− x+ 2x2, 2 + x− 2x2, 1− 2x+ 4x2

}
(b)

{
1 + 2x+ x2, 3 + x2, x+ x2

}
(c)

{
1− 2x− 2x2,−2 + 3x− x2, 1− x+ 6x2

}
(d)

{
− 1 + 2x+ 4x2, 3− 4x− 10x2,−2− 5x− 6x2

}
(e)

{
1 + 2x− x2, 4− 2x+ x2,−1 + 18x− 9x2

}
Solution: For the sake of brevity, we will not give the detail proofs for the reasoning. Readers are encouraged to work out
the details.

(a) The set does not form a basis as it is linearly dependent: 5 · (−1− x+ 2x2) + 3 · (2 + x− 2x2)− 1 · (1− 2x+ 4x2) = 0

(b) The set forms a basis

(c) The set forms a basis

(d) The set forms a basis

(e) The set does not form a basis as it is linearly dependent: 7 · (1 + 2x− x2)− 2 · (4− 2x+ x2)− 1 · (−1 + 18x− 9x2) = 0
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1.6.22. Let W1 and W2 be subspaces of a finite-dimensional vector space V . Determine necessary and sufficient conditions on W1

and W2 so that dim(W1 ∩W2) = dim(W1).

Solution: The sufficient and necessary condition is that W1 ⊆ W2.

Suppose W1 ⊆ W2. Then W1 ∩W2 = W1 and so dim(W1 ∩W2) = dim(W1).

Suppose dim(W1 ∩W2) = dim(W1). Since W1 ∩W2 ⊆ W1 and that W1 is finite-dimensional, W1 ∩W2 = W1. By set theory,
this implies that W1 ⊆ W2.

Thus dim(W1 ∩W2) = dim(W1) if and only if W1 ⊆ W2.

Note

This does not hold if V is not finite-dimensional.

1.6.28. Let V be a finite-dimensional vector space over C with dimension n. Prove that if V is now regarded as a vector space over
R, then dimV = 2n.

Solution: Denote the corresponding real vector space as VR. Note that V and VR share the same underlying set, which we
denote as S.

Let β ⊆ S be a C-basis of V . By assumption, we may assume that β = { v1, . . . , vn }.
Since β is a C-basis of V , v1, . . . , vn, i · v1, . . . , i · vn are distinct. Let γ = { v1, . . . , vn, i · v1, . . . , i · vn } ⊆ S. It suffices to
show that γ is a basis of VR as | γ | = 2n.

Let v ∈ S. Since β is a C-basis of V , there exists c1, . . . , cn ∈ C such that v =
∑n

k=1 ckvk =
∑n

k=1(ak + ibk)vk =∑n
k=1 akvk +

∑n
k=1 bk(i · vk) ∈ SpanR(γ) where ak = ℜck, bk = ℑck ∈ R are the real part and the imaginary part of ck

respectively. As γ ⊆ S, this implies that γ R-spans VR.

Let a1, . . . , an, b1, . . . , bn ∈ R such that 0 =
∑n

k=0 akvk +
∑n

k=0 bk(i · vk). Then 0 =
∑n

k=0(ak + ibk)vk where ak + ibk ∈ C for
all k. As β is a C-basis of V , ak + ibk = 0 for all k, thus ak = bk = 0 for all k. This implies that γ is R-linearly independent.

Therefore γ is a R-basis of VR, and so dimR(VR) = 2n.

1.6.31. Let W1 and W2 be subspaces of a vector space V having dimensions m and n, respectively, where m > n.

(a) Prove that dim(W1 ∩W2) ≤ n.

(b) Prove that dim(W1 +W2) ≤ m+ n.

Solution:

(a) As W1 ∩W2 ⊆ W2, dim(W1 ∩W2) ≤ dim(W2) = n

(b) By Question 1.6.29(a), dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2) ≤ dim(W1) + dim(W2) = m+ n

1.6.32. (a) Find an example of subspacesW1 andW2 of R3 with dimensionsm and n, wherem > n > 0, such that dim(W1∩W2) = n.

(b) Find an example of subspacesW1 andW2 of R3 with dimensionsm and n, wherem > n > 0, such that dim(W1+W2) = m+n.

Solution:

(a) LetW1 = { (x, y, 0) : x, y ∈ R }, W2 = { (x, 0, 0) : x ∈ R }. It is easy to see thatW1,W2 are subspaces of R3, W1 ⊇ W2,
dim(W1) = 2, dim(W2) = 1 = dim(W1 ∩W2)

(b) Let W1 = { (x, y, 0) : x, y ∈ R }, W2 = { (0, 0, z) : z ∈ R }. It is easy to see that W1,W2 are subspaces of R3,
W1 +W2 = R3, dim(W1) = 2, dim(W2) = 1, dim(W1 +W2) = 3 = dim(W1) + dim(W2)

1.6.33. (a) Let W1 and W2 be subspaces of a vector space V such that V = W1 ⊕ W2. If β1 and β2 are bases for W1 and W2,
respectively, show that β1 ∩ β2 = ∅ and β1 ∪ β2 is a basis for V .

(b) Conversely, let β1 and β2 be disjoint bases for subspaces W1 and W2, respectively, of a vector space V . Prove that if β1 ∪ β2

is a basis for V , then V = W1 ⊕W2.
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Solution:

(a) Suppose β1 ∩ β2 ̸= ∅. Then there exists v ∈ β1 ∩ β2 ⊂ W1 ∩W2 = {0}. Then 0 ∈ β1 ∩ β2. As β1 and β2 are basis, they
are linearly independent. Contradiction arises. Hence β1 ∩ β2 = ∅.
Trivially, Span( β1 ∪ β2 ) = Span( β1 ) + Span( β2 ) = W1 +W2 = V . It then remains to show that β1 ∪ β2 is linearly
independent.

Let n,m ∈ N, c1, . . . , cn, d1, . . . , dm ∈ F, and v1, . . . , vn ∈ β1, w1, . . . , wn ∈ β2 be distinct such that
∑n

i=1 civi +∑m
i=1 diwi = 0. Then

∑n
i=1 civi = −

∑m
i=1 diwi ∈ Span( β1 ) ∩ Span( β2 ) = W1 ∩ W2 = {0}. This implies that∑n

i=1 civi =
∑m

i=1 diwi = 0. As β1, β2 are linearly independent, c1 = . . . = cn = d1 = . . . = dm = 0. As
n,m, v1, . . . , vn, w1, . . . , wm are arbitrary, this implies that β1 ∩ β2 is linearly independent.

Hence β1 ∪ β2 is a basis of V .

(b) As β1 ∪ β2 is a basis of V , V = Span( β1 ∪ β2 ) = Span( β1 ) + Span( β2 ) = W1 +W2.

Trivially, W1 ∩ W2 ⊇ {0}. Let v ∈ W1 ∩ W2. Then v ∈ W1 = Span( β1 ) and v ∈ W2 = Span( β2 ). Let n,m ∈ N,
v1, . . . , vn ∈ β1, w1, . . . , wm ∈ β2 be distinct such that v =

∑n
i=1 civi =

∑m
i=1 diwi and so

∑n
i=1 civi −

∑m
i=1 diwi = 0.

As β1 ∩ β2 = ∅ and β1 ∪ β2 is linearly independent, c1 = . . . = cn = d1 = . . . = dm = 0, and so v =
∑n

i=1 civi = 0. As v
is arbitrary, W1 ∩W2 = {0}.
This implies that V = W1 ⊕W2.

Note

See also Question 1.4.15 in the previous homework.

1.6.34. (a) Prove that if W1 is any subspace of a finite-dimensional vector space V , then there exists a subspace W2 of V such that
V = W1 ⊕W2.

(b) Let V = R2 and W1 = { (a1, 0) : a1 ∈ R }. Give examples of two different subspaces W2 and W ′
2 such that V = W1 ⊕W2

and V = W1 ⊕W ′
2.

Solution:

(a) Since V is finite-dimensional, so is W1. Let β be a basis of W1. By Extension Theorem, we may extend β to a basis
γ = β ∪ α of V with α ⊆ V and β ∩ α = ∅. As γ is a basis, α is linearly independent. Let W2 = Span( α ). Then α is a
basis of W2. By Question 1.6.33(a), V = W1 ⊕W2.

(b) Let W2 = { (x, x) : x ∈ R } and W ′
2 = { (x,−x) : x ∈ R }. It is easy to see that W2,W

′
2 are distinct subspaces of

V = R2, W1 ∩W2 = W1 ∩W ′
2 = {0}, and W1 +W2 = W1 +W ′

2 = V , so V = W1 ⊕W2 = W1 ⊕W ′
2.

2.1.1. Label the following statements as true or false. In each part, V and W are finite-dimensional vector spaces (over F), and T is
a function from V to W .

(a) If T is linear, then T preserves sums and scalar products.

(b) If T (x+ y) = T (x) + T (y), then T is linear.

(c) T is one-to-one if and only if the only vector x such that T (x) = 0 is x = 0.

(d) If T is linear, then T (0V ) = 0W .

(e) If T is linear, then nullity(T ) + rank(T ) = dim(W ).

(f) If T is linear, then T carries linearly independent subsets of V onto linearly independent subsets of W .

(g) If T,U : V → W are both linear and agree on a basis for V , then T = U .

(h) Given x1, x2 ∈ V and y1, y2 ∈ W , there exists a linear transformation T : V → W such that T (x1) = y1 and T (x2) = y2.

Solution:

(a) True

(b) False. See Question 2.1.38.

(c) False. This only holds if T is linear.

(d) True
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(e) False. This only holds if dim(V ) = dim(W ).

(f) True. See Question 2.1.14.

(g) True

(h) False. Consider the case where x1 = x2 and y1 ̸= y2.

2.1.9. In this exercise, T : R2 → R2 is a function. For each of the following parts, state why T is not linear.

(a) T (a1, a2) = (1, a2)

(b) T (a1, a2) = (a1, a
2
1)

(c) T (a1, a2) = (sin a1, 0)

(d) T (a1, a2) = (|a1| , a2)
(e) T (a1, a2) = (a1 + 1, a2)

Solution: For the sake of brevity, we will only give brief explanations on why the mappings are not linear rather than
complete proofs.

(a) T (0, 0) = (1, 0) ̸= (0, 0)

(b) 2 · T (1, 0) = (2, 2) ̸= (2, 4) = T (2 · (1, 1))

(c) 2 · T (π/2, 0) = (2, 0) ̸= (−1, 0) = T (2 · (π/2, 0))

(d) −1 · T (1, 0) = (−1, 0) ̸= (1, 0) = T (−1 · (1, 0))

(e) T (0, 0) = (1, 0) ̸= (0, 0)

2.1.15. Define

T : P(R) → P(R) by T (f) =

∫ x

0

f(t) dt

Prove that T linear and one-to-one, but not onto.

Solution: Let f, g ∈ P(R), c ∈ R. Then

• T (f + g) =
∫ x

0
f(t) + g(t) dt =

∫ x

0
f(t) dt+

∫ x

0
g(t) dt = T (f) + T (g)

• T (cf) =
∫ x

0
cf(t) dt = c

∫ x

0
f(t) dt = cT (f)

Thus T is linear.

Let f ∈ N ( T ). WLOG we may assume that f(x) =
∑n

i=0 cix
i for some n ∈ N, c0, . . . , cn ∈ R. Then 0 = T (f) =

∫ x

0
f(t) dt =∑n

i=0

∫ x

0
cit

i dt =
∑n

i=0
ci
i+1x

i+1. By comparing coefficients, ci
i+1 = 0 for all i ∈ { 0, . . . , n }, thus c0 = . . . = cn = 0, f = 0.

This implies that T is one-to-one.

Suppose there exists f ∈ P(R) such that T (f) = 1 ∈ P(R) is the constant 1 polynomial. Then for all a ∈ R, 1 = T (f)(a) =∫ a

0
f(t) dt. In particular, 1 = T (f)(0) =

∫ 0

0
f(t) dt = 0. Contradiction arises. Hence 1 /∈ R ( T ). This implies that T is not

onto.

Note

You can also show the last part by comparing the coefficients of T (f) with 1.

2.1.19. Give an example of distinct linear transformations T and U such that N ( T ) = N ( U ) and R ( T ) = R ( U ).

Solution: Consider V = R being the (usual) real numbers, T,U : V → V be defined by T (x) = x and U(x) = −x for all
x ∈ V = R. Then it is easy to see that T,U are distinct, linear, and N ( T ) = {0} = N ( U ), R ( T ) = V = R ( U ).
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2.1.26. Let V be a vector space and W1 and W2 be subspaces of V such that V = W1⊕W2. Assume that T : V → V is the projection
on W1 along W2.

(a) Prove that T is linear and W1 = { x ∈ V : T (x) = x }.
(b) Prove that W1 = R ( T ) and W2 = N ( T ).

(c) Describe T if W1 = V .

(d) Describe T if W1 is the zero subspace.

Solution:

(a) We first show that T is linear.

Let v, v′ ∈ V and c ∈ F. As V = W1 ⊕ W2, there exists w1, w
′
1 ∈ W1 and w2, w

′
2 ∈ W2 such that v = w1 + w2,

v′ = w′
1 + w′

2. By definition, T (v) = w1 and T (v′) = w′
1. Then

• T (v + v′) = T (w1 + w′
1 + w2 + w′

2) = w1 + w′
1 = T (v) + T (v′) as w1 + w′

1 ∈ W1 and w2 + w′
2 ∈ W2.

• T (cv) = T (cw1 + cw′
1) = cw1 = cT (v)) as cw1 ∈ W1.

Since v, v′, c are arbitrary, T must be linear.

Let S = { x ∈ V : T (x) = x }.
Let w ∈ W1. Then w = w1 + 0 with w1 ∈ W1 and 0 ∈ W2. As T is a projection, we must have T (w) = w. As w is
arbitrary, W1 ⊆ S.

Let x ∈ S ⊆ V . Then T (x) = x. As x ∈ V = W1 ⊕W2, there exists w1 ∈ W1, w2 ∈ W2 such that x = w1 + w2. As T is
a projection, x = T (x) = w1 ∈ W1. As x is arbitrary, S ⊆ W1.

Therefore, W1 = { x ∈ V : T (x) = x }.

(b) By the previous part, W1 = { x ∈ V : T (x) = x } = { T (x) ∈ V : x ∈ V, T (x) = x } ⊆ R ( T ).

Let v ∈ R ( T ). Then there exists x ∈ V such that v = T (x). As x ∈ V = W1 ⊕W2, there exists w1 ∈ W1, w2 ∈ W2

such that x = w1 + w2. As T is a projection, v = T (x) = w1 ∈ W1. As v is arbitrary, R ( T ) ⊆ W1.

Hence W1 = R ( T ).

Let w ∈ W2. Then w = 0 + w with 0 ∈ W1 and w ∈ W2. As T is a projection, T (w) = 0, so w ∈ N ( T ). As w is
arbitrary, W2 ⊆ N ( T ).

Let x ∈ N ( T ). Then T (x) = 0. Since x ∈ V . there exists w1 ∈ W1, w2 ∈ W2 such that x = w1 + w2. As T is a
projection, 0 = T (x) = w1 and so x = w2 ∈ W2. As x is arbitrary, N ( T ) ⊆ W2.

Hence W2 = N ( T ).

(c) Suppose W1 = V . Then by part (a), V = { x ∈ V : T (x) = x }, so T (x) = x for all x ∈ V . This implies that T is the
identity map on V .

(d) Suppose W1 = {0}. Then W2 = W2 + {0} = W2 +W1 = V . So by part (b), V = W2 = N ( T ). This implies that T is
the zero map.

Note

In this question, we do not need to verify that T is well-defined (unlike the next question, Question 2.1.27). This is because
we are already given a mapping T and assume that it has a certain property (being a projection).

2.1.27. Suppose that W is a subspace of a finite-dimensional vector space V .

(a) Prove that there exists a subspace W ′ and a function T : V → V such that T is a projection on W along W ′.

(b) Give an example of a subspace W of a vector space V such that there are two projections on W along two (distinct)
subspaces.

Solution:

(a) Since V is finite-dimensional, W is also finite-dimensional. Let β ⊆ W be a basis of W . By Extension Theorem, β can
be extended to a basis α = β ∪ γ of V where γ ⊆ V and γ ∩ β = ∅.
Let W ′ = Span( γ ) ⊆ V . Then W ′ is a subspace of V . Also, V = Span( α ) = Span( β ∪ γ ) = Span( β ) + Span( γ ) =
W1 +W2. Furthermore, dim(W1) + dim(W2) = | β |+ | γ | = | β | = dim(V ), so by Question 1.6.29, V = W1 ⊕W2.
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By Question 1.3.30 (in the previous homework), for each x ∈ V there exist unique w1 ∈ W1 and w2 ∈ W2 such that
x = w1 + w2. Define T : V → V by T (x) = w1 for each x ∈ V where w1 is from the decomposition. Then T is
well-defined from the existence and uniqueness of such decomposition.

It remains to show that T is a projection on W along W ′. Let x ∈ V be such that x = w1 + w2 for some w1 ∈ W1,
w2 ∈ W2. Since V = W1 ⊕W2, such decomposition is unique. So by the definition of T we have T (x) = w1. As x is
arbitrary, T is a projection on W1 along W2.

Hence there exists a subspace W ′ and a function T : V → V such that T is a projection on W along W ′.

(b) Let V = R2 be the (usual) real plane, W1 = { (x, 0) ∈ V : x ∈ R }, W2 = { (x, x) ∈ V : x ∈ R }, W ′
2 = { (x,−x) ∈ V :

x ∈ R }. It is easy to see that W1,W2,W
′
2 are subspaces of V , W2 ̸= W ′

2, and V = W1 ⊕W2 = W1 ⊕W ′
2. Define T, T ′

to be the projection on W1 along W2 and the projection on W1 along W ′
2 respectively as in the last part.

By Question 2.1.26 part (b), we have N ( T ) = W2 ̸= W ′
2 = N ( T ′ ), so T ̸= T ′.

2.1.28. Assume that T : V → V is linear. Prove that {0}, V,R ( T ) ,N ( T ) are all T -invariant.

Solution:

• T{0} = {T (0)} = {0}

• By definition, for each v ∈ V , T (v) ∈ V , thus T (V ) ⊆ V

• For each v ∈ R ( T ) we have by definition of range that T (v) ∈ R ( T ), so T (R ( T )) ⊆ R ( T )

• For each v ∈ N ( T ) we have T (v) = 0 ∈ N ( T ), so T (N ( T )) ⊆ N ( T )

Therefore, {0}, V,R ( T ) ,N ( T ) are all T -invariant.

2.1.31. Assume that W is a subspace of a vector space V and that T : V → V is linear. Suppose that V = R ( T ) ⊕W and W is
T -invariant.

(a) Prove that W ⊆ N ( T ).

(b) Show that if V is finite-dimensional, then W = N ( T ).

(c) Show by example that the conclusion of (b) is not necessarily true if V is not finite-dimensional.

Solution:

(a) Let w ∈ W . Since W is T -invariant, T (w) ⊆ W . By definition, T (w) ∈ R ( T ), so T (w) ∈ W ∩ R ( T ). As V =
R ( T )⊕W , R ( T ) ∩W = {0}. Hence T (w) = 0, w ∈ N ( T ). As w is arbitrary, W ⊆ N ( T ).

(b) By dimension theorem and the result of Question 1.6.29(b), dim(V ) = dim(R ( T )) + dim(N ( T )) ≥ dim(R ( T )) +
dim(W ) = dim(V ). Hence dim(R ( T )) + dim(N ( T )) = dim(R ( T )) + dim(W ) and so dim(N ( T )) = dim(W ). As
W ⊆ N ( T ), W = N ( T ).

(c) Let V be the (real) vector space of real sequences. Let T : V → V be the left shift operator from Question 2.1.28. Then
T is linear, and R ( T ) = V . Let W = {0} ⊆ V . Then W is T -invariant, and V = V ⊕ {0} = R ( T ) ⊕W . However,
N ( T ) = { (0, a2, a3, . . .) ∈ V : a2, a3, . . . ∈ R } ≠ {0} = W .

2.1.32. Assume that W is a subspace of a vector space V and that T : V → V is linear. Suppose that W is T -invariant. Prove that
N ( TW ) = N ( T ) ∩W .

Solution:

(a) Let w ∈ N ( TW ). By definition, w ∈ W . Also, T (w) = TW (w) = 0, so w ∈ N ( T ). This implies that w ∈ W ∩ N ( T ).
As w is arbitrary, N ( TW ) ⊆ W ∩ N ( T ).

(b) Let w ∈ W ∩ N ( T ). Then T (w) = 0. As w ∈ W , TW (w) is well-defined and TW (w) = T (w) = 0, so w ∈ N ( TW ).

Therefore N ( TW ) = W ∩ N ( T ).
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2.1.39. Prove that there is an additive function T : R → R that is not linear.

Solution: Let β be a Q-basis of R. By cardinality argument, β is infinite, and so has at least two distinct elements. Let
x, y ∈ β be distinct. Define T : R → R by

T (v) =


y if v = x

x if v = y

v if v /∈ {x, y}

for v ∈ β and extend Q-linearly. As β is a Q-basis, T is a well-defined Q-linear map. In particular, T is additive.

We now show that T is not R-linear. As x, y ∈ β, neither of them is 0. Let c = y/x ∈ R. Then T (cx) = T (y) = x, and
cT (x) = cy = y2/x.

If T is R-linear, we would have x = T (cx) = cT (x) = y2/x. This would imply that y = x or y = −x and so β ⊇ {x, y} is not
Q-linearly independent, which is a contradiction to the assumption that β is a Q-basis. Hence T is not R-linear.
In particular, there exists an additive function from R to R that is not linear.

Note

Compare this with Question 2.1.37 and 2.1.38.

The explicit construction of β turns out to be a complicated matter. See this (and other relevant) answer on MO.

With β we can show a few more “surprising” results, including: for every positive integer n ≥ 2, there exists n periodic
functions f1, . . . , fn : R → R such that x = f1(x) + . . .+ fn(x) for all x ∈ R.

2.1.40. Let V be a vector space and W be a subspace of V . Define the mapping η : V → V/W by η(v) = v +W for v ∈ V .

(a) Prove that η is a linear transformation from V onto V/W and that N ( η ) = W .

(b) Suppose that V is finite-dimensional. Use (a) and the dimension theorem to derive a formula relating dim(V ), dim(W ), and
dim(V/W ).

(c) Compare the method of solving (b) with the method of deriving the same result as outlined in Exercise 35 of Section 1.6.

Solution:

(a) We first show that η is linear. Let x, y ∈ V , c ∈ F. Then

• η(x+ y) = (x+ y) +W = (x+W ) + (y +W ) = η(x) + η(y)

• η(cx) = (cx) +W = c(x+W ) = cη(x)

As x, y, c are arbitrary, η is linear.

For each S ∈ V/W , we have by definition of V/W that S = v +W = η(v) for some v ∈ V . Thus η is onto.

By the result of Question 1.3.21 (from the previous homework), for each v ∈ V , η(v) = v+W = W = 0V/W if and only
if v ∈ W . This implies that N ( η ) = W .

(b) By dimension theorem, dim(V ) = nullity(η) + rank(η) = dim(N ( η )) + dim(R ( η )) = dim(W ) + dim(V/W ).

(c) Exercise 3.5 of Section 1.6 is done by constructing a basis for V/W directly from extending a basis of W to a basis
of V . In view of the dimension theorem employed here, the proofs are similar: dimension theorem is also shown by
extending a basis of the null space and arguing that the extended part corresponds to the range; in Exercise 3.5, the
basis constructed is exactly the extended part.
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