
MATH2040 Homework 1

Reference Solution

1.2.13. Let V denote the set of ordered pairs of real numbers. If (a1, a2) and (b1, b2) are elements of V and c ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, a2b2) and c(a1, a2) = (ca1, a2)

Is V a vector space over R with those operations? Justify your answer.

Idea: To check if V is a vector space over R, we can check the axioms one by one. However, we can note that the scalar
multiplication defined does not affect the second coordinate, which combined with the addition could result in an example
that violates one of the axioms.

Solution: V is not a vector space as it does not satisfy distributivity with respect to scalar addition (VS 8): (0, 2) ∈ V and
1 ∈ R, but (1 + 1) · (0, 2) = 2 · (0, 2) = (0, 2) ̸= (0, 4) = (0, 2) + (0, 2) = 1 · (0, 2) + 1 · (0, 2).

Note

There are other axioms that are not satisfied. To show that V is not a vector space, we only need to find one such example.

1.2.18. Let V = { (a1, a2) : a1, a2 ∈ R }. For (a1, a2), (b1, b2) ∈ V and c ∈ R define

(a1, a2) + (b1, b2) = (a1 + 2b1, a2 + 3b2) and c(a1, a2) = (ca1, ca2)

Is V a vector space over R with these operations? Justify your answer.

Solution: V is not a vector space as it does not satisfy commutativity of addition (VS 1): (0, 0), (0, 1) ∈ V , but (0, 0)+(0, 1) =
(0 + 2 · 0, 0 + 3 · 1) = (0, 3) ̸= (0, 1) = (0 + 2 · 0, 1 + 3 · 0) = (0, 1) + (0, 0).

1.2.19. Let V = { (a1, a2) : a1, a2 ∈ R }. Define addition of elements of V coordinatewise, and for (a1, a2) in V and c ∈ R, define

c(a1, a2) =

{
(0, 0) if c = 0(
ca1,

a2

c

)
if c ̸= 0

Is V a vector space over R with these operations? Justify your answer.

Solution: V is not a vector space as it does not satisfy distributivity with respect to scalar addition (VS 8): (0, 2) ∈ V and
1 ∈ R, but (1 + 1) · (0, 2) = 2 · (0, 2) = (0, 1) ̸= (0, 4) = (0, 2) + (0, 2) = 1 · (0, 2) + 1 · (0, 2).

1.3.11. Is the set W = { f(x) ∈ P(F) : f(x) = 0 or f(x) has degree n } a subspace of P(F) if n ≥ 1? Justify your answer.

Idea: To check if W is a subspace of P(F), we can check the 3 conditions in the definition one by one. However, we can
note that the definition for W (on nonzero polynomial) depends only on the degree, which is not closed under addition on
polynomial.

Solution: W is not a vector for all possible n ≥ 1.

Let f(x) = xn + 1 and g(x) = −xn. Then f(x), g(x) both have degree n, so f(x), g(x) ∈ W , but f(x) + g(x) = (xn + 1) +
(−xn) = 1 has degree 0 ̸= n and is a nonzero polynomial, so f(x) + g(x) = 1 /∈ W . This implies that W is not closed under
addition, and so not a subspace of P(F).
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1.3.19. Let W1 and W2 be subspaces of a vectors space V . Prove that W1∪W2 is a subspace of V if and only if W1 ⊆ W2 or W2 ⊆ W1.

Solution:

(a) Suppose W1 ⊆ W2 or W2 ⊆ W1 holds. By symmetry (on the indices) we may assume that W1 ⊆ W2 holds. Then
W1 ∪W2 = W2, which by assumption is a subspace of V .

(b) Suppose neither W1 ⊆ W2 nor W2 ⊆ W1 holds. Then there exists w1 ∈ W1 \ W2 and w2 ∈ W2 \ W1. By definition,
w1, w2 ∈ W1 ∪W2.

If w1 + w2 ∈ W1 ∪ W2, it would be true that w1 + w2 ∈ W1 or w1 + w2 ∈ W2. By symmetry, we may assume that
w1 + w2 ∈ W1. As W1 is a subspace, we have −w1 ∈ W1 and so w2 = (w1 + w2) + (−w1) ∈ W1. Contradiction arises.
Hence w1 + w2 /∈ W1 ∪W2.

This implies that W1 ∪W2 is not closed under addition, and so is not a subspace of V .

Hence, W1 ∪W2 is a subspace of V if and only if W1 ∪W2 or W2 ∪W1.

1.3.23. Let W1 and W2 be subspaces of a vector space V .

(a) Prove that W1 +W2 is a subspace of V that contains both W1 and W2

(b) Prove that any subspace of V that contains both W1 and W2 must also contains W1 +W2

Solution:

(a) We first verify that W1 +W2 is a subspace of V .

• Since W1,W2 are subspaces of V , 0 ∈ W1 and 0 ∈ W2, so 0 = 0 + 0 ∈ W1 +W2.

• Let x, y ∈ W1+W2. By definition, there exists x1, y1 ∈ W1 and x2, y2 ∈ W2 such that x = x1+x2 and y = y1+y2. As
W1,W2 are subspaces, x1+y1 ∈ W1 and x2+y2 ∈ W2. So x+y = (x1+x2)+(y1+y2) = (x1+y1)+(x2+y2) ∈ W1+W2.

• Let x ∈ W1 +W2 and c ∈ F be a scalar. Then there exists x1 ∈ W1 and x2 ∈ W2 such that x = x1 + x2. Since
W1,W2 are subspaces, cx1 ∈ W1 and cx2 ∈ W2. So cx = c(x1 + x2) = (cx1) + (cx2) ∈ W1 +W2.

By definition, W1 +W2 is a subspace of V .

We now show that W1 +W2 contains both W1 and W2.

Let w1 ∈ W1. Since W2 is a subspace of V , 0 ∈ W2. So w1 = w1 + 0 ∈ W1 +W2. As w1 is arbitrary, W1 ⊆ W1 +W2.

Let w2 ∈ W2. Since W1 is a subspace of V , 0 ∈ W1. So w2 = 0 + w2 ∈ W1 +W2. As w2 is arbitrary, W2 ⊆ W1 +W2.

So W1 +W2 is a subspace of V that contains both W1 and W2.

(b) Let U ⊆ V be a subspace of V that contains both W1 and W2.

Let w ∈ W1 + W2. Then there exists w1 ∈ W1 and w2 ∈ W2 such that w = w1 + w2. Since W1 ⊆ U and W2 ⊆ U ,
w1, w2 ∈ U . Since U is a subspace, w = w1 + w2 ∈ U .

As w is arbitrary, W1 +W2 ⊆ U .

As U is arbitrary, every subspace of V that contains both W1 and W2 must also contain W1 +W2.

Note

Together with the previous question (Question 1.3.19), we can see that in the scope of linear algebra, set addition (or
Minkowski sum) plays the role of joining sub-structures as set union does in set theory, as set union is no longer suitable for
this purpose (except for degenerate cases).

See also Question 1.4.14.

1.3.26. In Mm×n(F) define W1 = { A ∈ Mm×n(F) : Aij = 0 whenever i > j } and W2 = { A ∈ Mm×n(F) : Aij = 0 whenever i ≤ j }.
Show that Mm×n(F) = W1 ⊕W2.

Idea: To show that Mm×n(F) = W1 ⊕W2, we need justify first that W1 and W2 are both subspaces of Mm×n(F) (as it is
not yet clear), then show that both Mm×n(F) = W1 +W2 and W1 ∩W2 = {0} hold, as required by the definition of direct
sum.
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Solution: Let V = Mn×m(F).
We first show that W1,W2 are subspaces of V .

Let 0m×n denote that zero matrix in V = Mm×n(F).

• For all i > j we have (0m×n)ij = 0, so 0m×n ∈ W1.

Similarly, for all i ≤ j we have (0m×n)ij = 0, so 0m×n ∈ W2.

• Let A,B ∈ W1. Then Aij = Bij = 0 for all i > j, hence (A + B)ij = Aij + Bij = 0 for all i > j. This implies that
A+B ∈ W1.

Similarly, let A,B ∈ W2. Then Aij = Bij = 0 for all i ≤ j, hence (A+B)ij = Aij +Bij = 0 for all i ≤ j. This implies
that A+B ∈ W2.

• Let A ∈ W1, c ∈ F. Then Aij = 0 for all i > j, so (cA)ij = cAij = 0 for all i > j. This implies that cA ∈ W1.

Similarly, let A ∈ W2, c ∈ F. Then Aij = 0 for all i ≤ j, so (cA)ij = cAij = 0 for all i ≤ j. This implies that cA ∈ W2.

This implies that W1,W2 are subspaces of V .

To show that V = W1 ⊕W2, we first show that V = W1 +W2.

Since W1,W2 ⊆ V , w1 + w2 ∈ V for all w1 ∈ W1, w2 ∈ W2. Hence W1 +W2 = { w1 + w2 : w1 ∈ W1, w2 ∈ W2 } ⊆ V .

Let A ∈ V . Define A1, A2 ∈ V as

(A1)ij =

{
Aij if i ≤ j

0 if i > j
and (A2)ij =

{
0 if i ≤ j

Aij if i > j
for all i ∈ { 1, . . . ,m } , j ∈ { 1, . . . , n }

By definition, A1 ∈ W1 and A2 ∈ W2. Also, for all i ∈ { 1, . . . ,m } and j ∈ { 1, . . . , n },

(A1 +A2)ij =

{
Aij + 0 if i ≤ j

0 +Aij if i > j
= Aij

So A = A1 +A2 ∈ W1 +W2. As A is arbitrary, V ⊆ W1 +W2.

Thus V = W1 +W2.

We now show that W1 ∩W2 = {0m×n}.
Since W1,W2 are subspaces of V , 0m×n ∈ W1 and 0m×n ∈ W2. Thus 0m×n ∈ W1 ∩W2, {0m×n} ⊆ W1 ∩W2.

Let A ∈ W1 ∩W2. Then Aij = 0 for all i > j and Aij = 0 for all i ≤ j. So Aij = 0 for all i ∈ { 1, . . . ,m }, j ∈ { 1, . . . , n }.
This implies that A = 0m×n. As A is arbitrary, W1 ∩W2 ⊆ {0m×n}.
Thus W1 ∩W2 = {0m×n}
This implies that Mm×n(F) = W1 ⊕W2.

1.3.31. Let W be a subspace of a vector space V over a field F.
(a) Prove that v +W is a subspace of V if and only if v ∈ W

(b) Prove that v1 +W = v2 +W if and only if v1 − v2 ∈ W

(c) Prove that the operations on the collection S = { v +W : v ∈ V } are well-defined; that is, show that if v1 +W = v′1 +W
and v2 +W = v′2 +W , then

(v1 +W ) + (v2 +W ) = (v′1 +W ) + (v′2 +W )

and
a(v1 +W ) = a(v′1 +W )

for all a ∈ F
(d) Prove that the set S is a vector space with the operations defined.

Solution:

(a) Suppose v+W is a subspaces of V . Then 0 ∈ v+W , and so v+w = 0 for some w ∈ W . This means that w = −v ∈ W .
As W is a subspace of V , v = −(−v) = −w ∈ W .

Suppose v ∈ W . We will show that v +W = W , which by assumption is a subspace of V :
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• For all w ∈ W we have v + w ∈ W , so v +W = { v + w : w ∈ W } ⊆ W .

• Let w ∈ W . Then we have w − v ∈ W and so w = v + (w − v) ∈ v +W . As w is arbitrary, W ⊆ v +W .

So v +W = W .

(b) Suppose v1 +W = v2 +W . Since W is a subspace of V , 0 ∈ W . So v1 = v1 +0 ∈ v1 +W = v2 +W . Hence there exists
w ∈ W such that v1 = v2 + w, and so v1 − v2 = w ∈ W .

Suppose v1 − v2 ∈ W . As W is a subspace of V , v2 − v1 = −(v1 − v2) ∈ W .

• Let v1 + w ∈ v1 +W for some w ∈ W . Then (v1 − v2) + w ∈ W , so v1 + w = v2 + (v1 − v2) + w ∈ v2 +W . As
v1 + w is arbitrary, v1 +W ⊆ v2 +W .

• By symmetry (on the indices), we also have v2 +W ⊆ v1 +W .

This implies that v1 +W = v2 +W .

(c) Let v1, v
′
1, v2, v

′
2 ∈ V be such that v1+W = v′1+W and v2+W = v′2+W , and a ∈ F. By the previous part, v1−v′1 ∈ W

and v2 − v′2 ∈ W .

i. As W is a subspace, we have (v1 + v2)− (v′1 + v′2) = (v1 − v′1) + (v2 − v′2) ∈ W . By the previous part, this implies
that (v1 +W ) + (v2 +W ) = (v1 + v2) +W = (v′1 + v′2) +W = (v′1 +W ) + (v′2) +W .

ii. Since W is a subspace, we have (av1)− (av′1) = a(v1 − v′1) ∈ W . By the previous part, a(v1 +W ) = (av1) +W =
(av′1) +W = a(v′1 +W ).

Hence the operations on S do not depend on the representation of the elements, and so are well-defined.

(d) To show that S, equipped with the operations defined, is a vector space over F, we verify all axioms one by one:

1. Let (x+W ), (y +W ) ∈ S. Then (x+W ) + (y +W ) = (x+ y) +W = (y + x) +W = (y +W ) + (x+W )

2. Let (x + W ), (y + W ), (z + W ) ∈ S. Then ((x+W ) + (y +W )) + (z + W ) = ((x + y) + W ) + (z + W ) =
(x+ y + z) +W = (x+W ) + ((y + z) +W ) = (x+W ) + ((y +W ) + (z +W ))

3. Denote 0⃗ = W = 0 +W . Then for all (x+W ) ∈ S, (x+W ) + 0⃗ = (x+W ) + (0 +W ) = x+W

4. Let x+W ∈ S with x ∈ V . Then (−x) +W ∈ S, and (x+W ) + ((−x) +W ) = (x+ (−x)) +W = 0 +W = 0⃗

5. Let x+W ∈ S. Then 1 · (x+W ) = (1 · x) +W = x+W

6. Let x+W ∈ S, a, b ∈ F. Then a · (b · (x+W )) = a · ((bx) +W ) = (abx) +W = (ab) · (x+W )

7. Let a ∈ F and (x +W ), (y +W ) ∈ S. Then a · ((x +W ) + (y +W )) = a · ((x + y) +W ) = (a · (x + y)) +W =
(ax+ ay) +W = ((ax) +W ) + ((ay) +W ) = a · (x+W ) + a · (y +W )

8. Let a, b ∈ F and x+W ∈ S. Then (a+b) · (x+W ) = ((a+b) ·x)+W = (ax+bx)+W = ((ax)+W )+((bx)+W ) =
a · (x+W ) + b · (x+W )

Since all axioms are satisfied, S is a vector space over F with the operations defined.

1.4.5. In each part, determine whether the given vector is in the span of S.

(a) (2,−1, 1), S = { (1, 0, 2), (−1, 1, 1) }
(b) (−1, 2, 1), S = { (1, 0, 2), (−1, 1, 1) }
(c) (−1, 1, 1, 2), S = { (1, 0, 1,−1), (0, 1, 1, 1) }
(d) (2,−1, 1,−3), S = { (1, 0, 1,−1), (0, 1, 1, 1) }
(e) −x3 + 2x2 + 3x+ 3, S =

{
x3 + x2 + x+ 1, x2 + x+ 1, x+ 1

}
(f) 2x3 − x2 + x+ 3, S =

{
x3 + x2 + x+ 1, x2 + x+ 1, x+ 1

}
(g)

(
1 2
−3 4

)
, S =

{ (
1 0
−1 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

) }
(h)

(
1 0
0 1

)
, S =

{ (
1 0
−1 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

) }

Idea: To show that a given vector is spanned by a set, it suffices to express the vector as a linear combination of vectors
from the set. On the other hand, to show that a given vector is not spanned by the set, it is necessary to show that no linear
combination of vectors from the sets equals to the given vector.
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A common way to tackle this kind of problem is to find the coefficients of the correct linear combination. This works when the
set S is a finite set. Usually, for subsets of spaces like Rn and Cn, the coefficients would satisfy a system of linear equations,
which can be solved with techniques from MATH1030.

Solution:

(a) (2,−1, 1) ∈ Span( S ) as (2,−1, 1) = 1 · (1, 0, 2)− 1 · (−1, 1, 1)

(b) (−1, 2, 1) /∈ Span( S ). Suppose (−1, 2, 1) = a · (1, 0, 2) + b · (−1, 1, 1) = (a− b, b, 2a+ b) for some scalars a, b. Then we
must have a − b = −1, b = 2, 2a + b = 1. However, the system does not have any solution. So (−1, 2, 1) cannot be
spanned by S.

(c) (−1, 1, 1, 2) /∈ Span( S ). Suppose (−1, 1, 1, 2) = a · (1, 0, 1,−1) + b · (0, 1, 1, 1) = (a, b, a + b,−a + b) for some scalars
a, b. Then we must have a = −1, b = 1, a + b = 1, −a + b = 2. However, the system does not have any solution. So
(−1, 1, 1, 2) cannot be spanned by S.

(d) (2,−1, 1,−3) ∈ Span( S ) as (2,−1, 1,−3) = 2 · (1, 0, 1,−1)− 1 · (0, 1, 1, 1)

(e) −x3 + 2x2 + 3x+ 3 ∈ Span( S ) as −x3 + 2x2 + 3x+ 3 = −1 · (x3 + x2 + x+ 1) + 3 · (x2 + x+ 1) + 1 · (x+ 1)

(f) 2x3 − x2 + x + 3 /∈ Span( S ). Suppose 2x3 − x2 + x + 3 = a · (x3 + x2 + x + 1) + b · (x2 + x + 1) + c · (x + 1) =
ax3 + (a+ b)x2 + (a+ b+ c)x+ (a+ b+ c) for some scalars a, b, c. Then we must have a = 2, a+ b = −1, a+ b+ c = 1,
a+ b+ c = 3. However, the system does not have any solution. So −x3 + 2x2 + 3x+ 3 cannot be spanned by S

(g)

(
1 2
−3 4

)
∈ Span( S ) as

(
1 2
−3 4

)
= 3 ·

(
1 0
−1 0

)
+ 4 ·

(
0 1
0 1

)
− 2 ·

(
1 1
0 0

)

(h)

(
1 0
0 1

)
/∈ Span( S ). Suppose

(
1 0
0 1

)
= a ·

(
1 0
−1 0

)
+ b ·

(
0 1
0 1

)
+ c ·

(
1 1
0 0

)
=

(
a+ c b+ c
−a b

)
for some scalars

a, b, c. Then we must have a + c = 1, b + c = 0, −a = 0, b = 1. However, the system does not have any solution. So(
1 0
0 1

)
cannot be spanned by S.

1.4.10. Show that if

M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
, M3 =

(
0 1
1 0

)
,

then the span of { M1,M2,M3 } is the set of all symmetric 2× 2 matrices.

Solution: Denote the set of 2× 2 symmetric matrices by S ⊆ M2×2(F).

Let A ∈ S ⊆ M2×2(F). Then A =

(
a b
c d

)
for some a, b, c, d ∈ F. As A is symmetric, b = c. So A =

(
a b
b d

)
= a ·

(
1 0
0 0

)
+

d ·
(
0 0
0 1

)
+ b ·

(
0 1
1 0

)
= a ·M1 + d ·M2 + b ·M3 ∈ Span( { M1,M2,M3 } ). As A is arbitrary, S ⊆ Span( { M1,M2,M3 } ).

Before showing that Span( { M1,M2,M3 } ) ⊆ S, we will first show that S is a subspace of M2×2(F). It is easy to verify that
S satisfies all conditions:

• The zero matrix 02×2 =

(
0 0
0 0

)
is a symmetric 2× 2 matrix, and so 02×2 ∈ S

• Let A1, A2 ∈ S. Then A1 =

(
a1 b1
b1 d1

)
and A2 =

(
a2 b2
b2 d2

)
for some scalars a1, b1, d1, a2, b2, d2. So A1 + A2 =(

a1 + a2 b1 + b2
b1 + b2 d1 + d2

)
, which is a symmetric 2× 2 matrix, so A1 +A2 ∈ S

• Let A ∈ S, c ∈ F. Then A =

(
a b
b d

)
for some scalars a, b, d. Then cA =

(
ca cb
cb cd

)
, which is a symmetric 2×2 matrix,

so cA ∈ S

Hence S is a subspace of M2×2(F).
Since each of M1,M2,M3 is a symmetric 2× 2 matrix, { M1,M2,M3 } ⊆ S, so Span( { M1,M2,M3 } ) ⊆ S by the property
of span.

Therefore, S = Span( { M1,M2,M3 } ).
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1.4.14. Show that if S1 and S2 are arbitrary subsets of a vector space V , then Span( S1 ∪ S2 ) = Span( S1 ) + Span( S2 ).

Solution: By the property of span, we have S1 ⊆ Span( S1 ).

Since Span( S2 ) is a subspace of V , 0 ∈ Span( S2 ), and so Span( S1 ) = Span( S1 ) + {0} ⊆ Span( S1 ) + Span( S2 ).

Thus, S1 ⊆ Span( S1 ) + Span( S2 ). Similarly, we have S2 ⊆ Span( S1 ) + Span( S2 ), so S1 ∪ S2 ⊆ Span( S1 ) + Span( S2 ).

By Question 1.3.23, Span( S1 ) + Span( S2 ), being a sum of subspaces Span( S1 ) and Span( S2 ), is a subspace of V . So by
the property of span we have Span( S1 ∪ S2 ) ⊆ Span( S1 ) + Span( S2 ).

Trivially, S1 ⊆ S1 ∪ S2 ⊆ Span( S1 ∪ S2 ), so Span( S1 ) ⊆ Span( S1 ∪ S2 ). Similarly, Span( S2 ) ⊆ Span( S1 ∪ S2 ). By
Question 1.3.23, Span( S1 ) + Span( S2 ) ⊆ Span( S1 ∪ S2 ).

Therefore, Span( S1 ) + Span( S2 ) = Span( S1 ∪ S2 ).

Note

Do not assume that S1 or S2 is a finite set. In particular, do not write something like S = { v1, v2, . . . , vn } unless you
know already that S is a (nonempty) finite set. This is also the reason why the above proof utilizes the properties of span
and sum (from Question 1.3.23) instead of going through the definitions (in particular, the definition of span).

With an appropriate definition on sum, this proposition can be generalized beyond summing two spans to summing an
arbitrary collection of spans:

∑
α Span( Sα ) = Span(

⋃
α Sα ). Together with Question 1.4.12, we have a way of joining an

arbitrary collection of subspaces {Uα}: it is just Span(
⋃

α Uα )

1.4.15. Let S1 and S2 be subsets of a vector space V . Prove that Span( S1 ∩ S2 ) ⊆ Span( S1 ) ∩ Span( S2 ). Give an example in
which Span( S1 ∩ S2 ) and Span( S1 ) ∩ Span( S2 ) are equal and one in which they are unequal.

Solution: Since S1 ∩ S2 ⊆ S1 ⊆ Span( S1 ), we have by the property of span that Span( S1 ∩ S2 ) ⊆ Span( S1 ). Similarly,
we have Span( S1 ∩ S2 ) ⊆ Span( S2 ). So Span( S1 ∩ S2 ) ⊆ Span( S1 ) ∩ Span( S2 ).

To give examples, consider V = R, the (usual) real line:

• For S1 = S2 = ∅, we have Span( S1 ) = Span( S2 ) = Span( S1 ∩ S2 ) = {0}

• For S1 = { 1 } and S2 = { 2 }, we have Span( S1 ) = Span( S2 ) = V but Span( S1 ∩ S2 ) = Span( ∅ ) = {0} ≠ V

Note

The existences of these examples are mostly artifact of the distinction between subsets and subspaces. See also Question
1.4.12.

Practice Problems

1.2.1. Label the following statements as true or false.

(a) Every vector space contains a zero vector.

(b) A vector space may have more than one zero vector.

(c) In any vector space, ax = bx implies that a = b.

(d) In any vector space, ax = ay implies that x = y.

(e) A vector in Fn may be regarded as a matrix in Mn×1(F)
(f) An m× n matrix has m columns and n rows.

(g) In P(F), only polynomials of the same degree may be added.

(h) If f and g are polynomials of degree n, then f + g is a polynomial of degree n.

(i) If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n.

Solution:

(a) True
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(b) False. If 0, 0′ are both zero vectors of a vector space, we must have 0 = 0 + 0′ = 0′

(c) False. Consider x = 0, the zero vector

(d) False. Consider a = 0, the zero scalar

(e) True

(f) False. It should be m rows and n columns

(g) False

(h) False. See Question 1.3.11

(i) True

1.2.8. In any vector space V , show that (a+ b)(x+ y) = ax+ by + bx+ ay for any x, y ∈ V and any a, b ∈ F

Solution: By the axioms of vector space, (a+ b)(x+ y) = (a+ b)x+ (a+ b)y = ax+ bx+ ay + by

1.2.14. Let V = { (a1, a2, . . . , an) : ai ∈ C for i = 1, 2, . . . , n }; so V is a vector space over C. Is V a vector space over the field of
real numbers with the operations of coordinatewise addition and multiplication?

Solution: (V,R,+R, ·R) is a real vector space. All axioms can be verified directly as V itself is a complex vector space, which
we will omit the detailed steps here. The only axioms that are relevant are those that involve scalar multiplication, which
still hold true due to the fact that R is a subfield of C.

1.2.15. Let V = { (a1, a2, . . . , an) : ai ∈ R for i = 1, 2, . . . , n }; so V is a vector space over R. Is V a vector space over the field of
complex numbers with the operations of coordinatewise addition and multiplication?

Solution: (V,C,+C, ·C) is not a complex vector space: (1, 0, . . . , 0) ∈ V but i · (1, . . . , 0) = (i, 0, . . . , 0) /∈ V as i /∈ R.

1.2.21. Let V and W be vector spaces over a field F. Let

Z = { (v, w) : v ∈ V and w ∈ W }

Prove that Z is a vector space over F with the operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and c(v1, w1) = (cw1, cw2)

Solution: We verify all axioms one by one:

1. Let x = (vx, wx), y = (vy, wy) ∈ Z with vx, vy ∈ V and wx, wy ∈ W . Then x+ y = (vx, wx) + (vy, wy) = (vx + vy, wx +
wy) = (vy + vx, wy + wx) = (vy, wy) + (vx, wx) = y + x

2. Let x = (vx, wx), y = (vy, wy), z = (vz, wz) ∈ Z with vx, vy, vz ∈ V and wx, wy, wz ∈ W . Then (x + y) + z =
((vx, wx)+(vy, wy))+(vz, wz) = (vx+vy, wx+wy)+(vz, wz) = (vx+vy+vz, wx+wy+wz) = (vx, wx)+(vy+vz, wy+wz) =
(vx, wx) + ((vy, wy) + (vz, wx)) = x+ (y + z)

3. Let 0⃗ = (0V , 0W ) where 0V , 0W are the zero vectors of V,W respectively. Then 0⃗ ∈ Z and for all x = (vx, wx) ∈ Z,
x+ 0⃗ = (vx, wx) + (0V , 0W ) = (vx + 0V , wx + 0W ) = (vx, wx) = x

4. Let x = (vx, wx) ∈ Z. Then for y = (−vx,−wx), y ∈ Z and x + y = (vx, wx) + (−vx,−wx) = (vx − vx, wx − wx) =
(0V , 0W ) = 0⃗

5. Let x = (vx, wx) ∈ Z. Then 1 · x = 1 · (vx, wx) = (1 · vx, 1 · wx) = (vx, wx) = x
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6. Let x = (vx, wx) ∈ Z and a, b ∈ F. Then a·(b·x) = a·(b·(vx, wx)) = a·(bvx, bwx) = (abvx, abwx) = (ab)·(vx, wx) = (ab)·x

7. Let x = (vx, wx), y = (vy, wy) ∈ Z and a ∈ F. Then a · (x + y) = a · ((vx, wx) + (vy, wy)) = a · (vx + vy, wx + wy) =
(a · (vx + vy), a · (wx +wy)) = (avx + avy, awx + awy) = (avx, avy)+ (awx, awy) = a · (vx, wx)+ a · (vy, wy) = a ·x+ a · y

8. Let x = (vx, wx) ∈ Z and a, b ∈ F. Then (a+b)·x = (a+b)·(vx, wx) = ((a+b)·vx, (a+b)·wx) = (avx+bvx, awx+bwx) =
(avx, awx) + (bvx, bwx) = a · (vx, wx) + b · (vx, wx) = a · x+ b · x

As the axioms are satisfied, Z is a vector space over F with the operations defined.

Note

You cannot simply claim that Z is a vector space by just checking the 3 conditions in the definition for subspaces. If you
want to do so, you will need to first show that Z is contained (as a subset) of some known vector space that would give the
same addition and scalar multiplication on Z. In this case a natural choice will (most likely) be Z itself, which we do not
(yet) have a vector space structure on Z (in fact, this is exactly what this question asks for).

1.3.1. Label the following statements as true or false.

(a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace of V .

(b) The empty set is a subspace of every vector space.

(c) If V is a vector space other than the zero vector space, then V contains a subspace W such that W ̸= V .

(d) The intersection of any two subsets of V is a subspace of V .

(e) An n× n diagonal matrix can never have more than n nonzero entries.

(f) The trace of a square matrix is the product of its diagonal entries.

(g) Let W be the xy-plane in R3. Then W = R2

Solution:

(a) False, unless the vector space structure on W is consistent with the one on V . For example, consider V = C2 the same
as Question 1.2.14, then W = { (x, y) ∈ V : x, y ∈ R } is a (real) vector space with the usual operations on the scalar
field R ⫋ C (which gives the structure equivalent to that on R2), but W is not a subspace of the complex vector space
V .

(b) False. The empty set is not a vector space.

(c) True. Consider W = {0V }

(d) False

(e) True

(f) False

(g) False. Note that they are only equivalent / isomorphic, not equal

1.3.8. Determine whether the following sets are subspaces of R3 under the operations of addition and scalar multiplication defined
on R3. Justify your answers.

(a) W1 =
{
(a1, a2, a3) ∈ R3 : a1 = 3a2 and a3 = −a2

}
(b) W2 =

{
(a1, a2, a3) ∈ R3 : a1 = a3 + 2

}
(c) W3 =

{
(a1, a2, a3) ∈ R3 : 2a1 − 7a2 + a3 = 0

}
(d) W4 =

{
(a1, a2, a3) ∈ R3 : a1 − 4a2 − a3 = 0

}
(e) W5 =

{
(a1, a2, a3) ∈ R3 : a1 + 2a2 − 3a3 = 1

}
(f) W6 =

{
(a1, a2, a3) ∈ R3 : 5a21 − 3a22 + 6a23 = 0

}
Solution:

(a) W1 is a subspace of R3:
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• (0, 0, 0) ∈ W1 as 0 = 3 · 0 and 0 = −0

• For all (a1, a2, a3), (b1, b2, b3) ∈ W1, we have a1 = 3a2, a3 = −a2, b1 = 3b2, b3 = −b2, and so (a1 + b1) = 3(a2 + b2)
and a3 + b3 = −(a2 + b2), which implies that (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) ∈ W1

• For all (a1, a2, a3) ∈ W1 and c ∈ R, we have a1 = 3a2, a3 = −a2, and so ca1 = 3(ca2) and ca3 = −(ca2), which
implies that c(a1, a2, a3) = (ca1, ca2, ca3) ∈ W1

(b) W2 is not a subspace of R3: (0, 0, 0) /∈ W2 as 0 ̸= 2 = 0 + 2

(c) W3 is a subspace of R3:

• (0, 0, 0) ∈ W3 as 2 · 0− 7 · 0 + 0 = 0

• For all (a1, a2, a3), (b1, b2, b3) ∈ W3, we have 2a1−7a2+a3 = 0, 2b1−7b2+b3 = 0, and so 2(a1+b1)−7(a2+b2)+(a3+
b3) = (2a1−7a2+a3)+(2b1−7b2+b3) = 0, which implies that (a1, a2, a3)+(b1, b2, b3) = (a1+b1, a2+b2, a3+b3) ∈ W3

• For all (a1, a2, a3) ∈ W3 and c ∈ R, we have 2a1−7a2+a3 = 0, and so 2(ca1)−7(ca2)+(ca3) = c(2a1−7a2+a3) = 0,
which implies that c(a1, a2, a3) = (ca1, ca2, ca3) ∈ W3

(d) W4 is a subspace of R3:

• (0, 0, 0) ∈ W4 as 2 · 0− 7 · 0 + 0 = 0

• For all (a1, a2, a3), (b1, b2, b3) ∈ W4, we have a1−4a2−a3 = 0, b1−4b2−b3 = 0, and so (a1+b1)−4(a2+b2)−(a3+b3) =
(a1 − 4a2 − a3) + (b1 − 4b2 − b3) = 0, which implies that (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) ∈ W4

• For all (a1, a2, a3) ∈ W4 and c ∈ R, we have a1−4a2−a3 = 0, and so (ca1)−4(ca2)−(ca3) = c(a1−4a2−a3 = 0) = 0,
which implies that c(a1, a2, a3) = (ca1, ca2, ca3) ∈ W4

(e) W5 is not a subspace of R3: (0, 0, 0) /∈ W5 as 0 + 2 · 0− 3 · 0 = 0 ̸= 1

(f) W6 is not a subspace of R3:
(

1√
5
, 1√

3
, 0
)
,
(
0,− 1√

3
, 1√

6

)
∈ W6 as 5

(
1√
5

)2

− 3
(

1√
3

)2

+ 6(0)2 = 5(0)2 − 3
(
− 1√

3

)2

+

6
(

1√
6

)2

= 0, but
(

1√
5
, 1√

3
, 0
)
+
(
0,− 1√

3
, 1√

6

)
=

(
1√
5
, 0, 1√

6

)
/∈ W6 as 5

(
1√
5

)2

− 3(0)2 + 6
(

1√
6

)2

= 2 ̸= 0

Note

A rule of thumb to check whether a subset of Rn is subspace is to see if the defining constrains form a homogeneous linear
system. Note that this does not (yet) constitute a proof. The rationale will be made clear in future lectures.

1.3.22. Let F1 and F2 be fields. Prove that the set of all even functions in F(F1,F2) and the set of all odd functions in F(F1,F2) are
subspaces of F(F1,F2).

Solution: Let 0⃗ ∈ F(F1,F2) denote the zero function, i.e. 0⃗(t) = 0F2
for all t ∈ F1. Denote also the set of all even functions

in F(F1,F2) as E , and the set of all odd functions in F(F1,F2) as O
(a) 1. 0⃗ ∈ E as for all t ∈ F1, 0⃗(−t) = 0 = 0⃗(t)

2. Let f, g ∈ E . Then f(t) = f(−t), g(t) = g(−t) for all t ∈ F1, so (f+g)(−t) = f(−t)+g(−t) = f(t)+g(t) = (f+g)(t)
for all t ∈ F1, hence f + g ∈ E

3. Let f ∈ E and a ∈ F2. Then (af)(−t) = af(−t) = af(t) = (af)(t) for all t ∈ F1, so af ∈ E
Thus E is a subspace of F(F1,F2)

(b) 1. 0⃗ ∈ O as for all t ∈ F1, 0⃗(−t) = 0 = −0 = −0⃗(t)

2. Let f, g ∈ O. Then −f(t) = f(−t), −g(t) = g(−t) for all t ∈ F1, so (f +g)(−t) = f(−t)+g(−t) = −(f(t)+g(t)) =
−(f + g)(t) for all t ∈ F1, hence f + g ∈ O

3. Let f ∈ O and a ∈ F2. Then (af)(−t) = af(−t) = −af(t) = −(af)(t) for all t ∈ F1, so af ∈ O
Thus O is a subspace of F(F1,F2).

1.3.28. Let F be a field. Prove that the set W1 of all skew-symmetric n× n matrices with entries from F is a subspace of Mn×n(F).
Now assume that F is not of characteristic 2, and let W2 be the subspace of Mn×n(F) consisting of all symmetric n×n matrices.
Prove that Mn×n(F) = W1 ⊕W2.
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Solution:

(a) • Let 0n×n ∈ Mn×n(F) denote the n × n zero matrix. Then (0n×n)ji = 0 = −(0n×n)ij for all i, j ∈ { 1, . . . , n }.
Hence 0n×n ∈ W1.

• Let A,B ∈ W1. Then Aji = −Aij , Bji = −Bij for all i, j ∈ { 1, . . . , n }. So for all i, j ∈ { 1, . . . , n }, (A+ B)ji =
Aji +Bji = −(Aij +Bij) = −(A+B)ij , hence A+B ∈ W1

• Let A ∈ W1, c ∈ F. Then Aji = −Aij for all i, j ∈ { 1, . . . , n }. So for all i, j ∈ { 1, . . . , n }, (cA)ji = cAji =
−cAij = −(cA)ij , hence cA ∈ W1

So W1 is a subspace of Mn×n(F).

(b) Since F is not of characteristic 2, 2 = 1 + 1 ̸= 0 and 1
2 ∈ F.

• Let A ∈ Mn×n(F). For A1 = 1
2 (A−AT), A2 = 1

2 (A+AT) ∈ Mn×n(F), we have AT
1 = 1

2 (A−AT)T = 1
2 (A

T −A) =
−A1, AT

2 = 1
2 (A + AT)T = 1

2 (A
T + A) = A2. So A1 ∈ W1, A2 ∈ W2. By definition, we have A1 + A2 =

1
2 (A−AT) + 1

2 (A+AT) = (1 + 1) · 1
2A = A, so A ∈ W1 +W2.

As A is arbitrary, Mn×n(F) ⊆ W1 +W2.

Since W1,W2 ⊆ Mn×n(F), we have W1 +W2 ⊆ Mn×n(F). Thus Mn×n(F) = W1 +W2.

• Since W1,W2 are subspace of Mn×n(F), we have {0n×n} ⊆ W1 ∩W2.

Let A ∈ W1 ∩W2. Then AT = A and AT = −A. So A = 1
2 (1 + 1) · AT = 1

2 (A
T − AT) = 0n×n. As A is arbitrary,

W1 ∩W2 ⊆ {0n×n}.
Thus W1 ∩W2 = {0n×n}.

Therefore, Mn×n(F) = W1 ⊕W2.

Note

The characteristic of F not being 2 is necessary for the second part: in a field of characteristic 2, skew-symmetric matrices
are exactly those that are symmetric as −1 = 1, but not every matrix is symmetric.

Please note also the similarity between this question and the previous one (Question 1.3.22).

1.3.30. Let W1 and W2 be subspaces of a vector space V . Prove that V is the direct sum of W1 and W2 if and only if each vector in
V can be uniquely written as x1 + x2, where x1 ∈ W1 and x2 ∈ W2.

Solution:

(a) Suppose V = W1 ⊕W2. Then V = W1 +W2 and W1 ∩W2 = {0}.
Since V = W1 +W2, every vector v ∈ V can be written as v = x1 + x2 for some x1 ∈ W1, x2 ∈ W2. It remains to show
that this decomposition is unique.

Let v ∈ V such that v = x1 + x2 = y1 + y2 with x1, y1 ∈ W1, x2, y2 ∈ W2. Then x1 − y1 = y2 − x2. Since W1,W2 are
subspaces of V , we have x1 − y1 ∈ W1 and y2 − x2 ∈ W2. So x1 − y1 = y2 − x2 ∈ W1 ∩W2 = {0}. This implies that
x1 − y1 = y2 − x2 = 0, and so x1 = y1, x2 = y2.

Thus every vector in V can be uniquely written as x1 + x2 where x1 ∈ W1, x2 ∈ W2.

(b) Suppose each vector in V can be uniquely written as x1 + x2 where x1 ∈ W1, x2 ∈ W2.

Since every vector in v ∈ V can be written as v = x1 + x2 for some x1 ∈ W1, x2 ∈ W2, we have V ⊆ W1 + W2. As
W1,W2 are subspaces of V , we trivially also have W1 +W2 ⊆ V , so V = W1 +W2.

Trivially {0} ⊆ W1 ∩ W2. Let v ∈ W1 ∩ W2. Then v = v + 0 = 0 + v as 0, v ∈ W1 ∩ W2. By the uniqueness of the
decomposition, we must have v = 0 and 0 = v. As v is arbitrary, this implies that W1 ∩W2 ⊆ {0}, so W1 ∩W2 = {0}.
Thus V = W1 ⊕W2.

Therefore, V = W1 ⊕W2 if and only if each vector in V can be uniquely written as x1 + x2, where x1 ∈ W1 and x2 ∈ W2.

Note

This proposition implies that direct sum is, in some sense, a natural way of combining subspaces. Different from join (span
of unions, see Question 1.3.23 and Question 1.4.14, and the notes therein), direct sum concerns less about ordering (by
inclusion) and more on the structure.
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1.4.1. Label the following statements as true or false.

(a) The zero vector is a linear combination of any nonempty set of vectors.

(b) The span of ∅ is ∅.
(c) If S is a subset of a vector space V , then Span( S ) equals the intersection of all subspaces of V that contain S.

(d) In solving a system of linear equations, it is permissible to multiply an equation by any constant.

(e) In solving a system of linear equations, it is permissible to add any multiple of one equation to another.

(f) Every system of linear equations has a solution.

Solution:

(a) True

(b) False. Span( ∅ ) = {0} is the zero vector space

(c) True. Note that Span( S ) is the smallest subspace of V that contains S, and intersections of subspaces is still a subspace.
The proof is an easy exercise.

(d) False. Note that multiplying an equation by zero is prohibited (as it is not a reversible operation and may lead to lose
of information, usually results in extraneous solutions)

(e) True

(f) False

1.4.4. For each list of polynomials in P3(R), determine whether the first polynomial can be expressed as a linear combination of the
other two.

(a) x3 − 3x+ 5, x3 + 2x2 − x+ 1, x3 + 3x2 − 1

(b) 4x3 + 2x2 − 6, x3 − 2x2 + 4x+ 1, 3x3 − 6x2 + x+ 4

(c) −2x3 − 11x2 + 3x+ 2, x3 − 2x2 + 3x− 1, 2x3 + x2 + 3x− 2

(d) x3 + x2 + 2x+ 13, 2x3 − 3x2 + 4x+ 1, x3 − x2 + 2x+ 3

(e) x3 − 8x2 + 4x, x3 − 2x2 + 3x− 1, x3 − 2x+ 3

(f) 6x3 − 3x2 + x+ 2, x3 − x2 + 2x+ 3, 2x3 − 3x+ 1

Solution:

(a) x3 − 3x+5 is a linear combination of the other two polynomials: x3 − 3x+5 = 3 · (x3 +2x2 − x+1)− 2 · (x3 +3x2 − 1)

(b) 4x3+2x2−6 is not a linear combination of the other two polynomials. Suppose 4x3+2x2−6 = a · (x3−2x2+4x+1)+
b · (3x3− 6x2+x+4) = (a+3b)x3− 2(a+3b)x2+(4a+ b)x+(a+4b) for some a, b ∈ R. Then a+3b = 4, 2(a+3b) = 2,
4a+ b = 0, a+4b = −6. However, this system does not have any solution. So 4x3 +2x2 − 6 is not a linear combination
of x3 − 2x2 + 4x+ 1 and 3x3 − 6x2 + x+ 4

(c) −2x3 − 11x2 +3x+2 is a linear combination of the other two polynomials: −2x3 − 11x2 +3x+2 = 4 · (x3 − 2x2 +3x−
1)− 3 · (2x3 + x2 + 3x− 2)

(d) x3 + x2 +2x+13 is a linear combination of the other two polynomials: x3 + x2 +2x+13 = −2 · (2x3 − 3x2 +4x+1)+
5 · (x3 − x2 + 2x+ 3)

(e) x3 − 8x2 + 4x is not a linear combination of the other two polynomials. Suppose x3 − 8x2 + 4x = a · (x3 − 2x2 + 3x−
1) + b · (x3 − 2x + 3) = (a + b)x3 − 2ax2 + (3a − 2b)x + (−a + 3b) for some a, b ∈ R. Then a + b = 1, −2a = −8,
3a−2b = 4, −a+3b = 0. However, this system does not have any solution. So x3−8x2+4x is not a linear combination
of x3 − 2x2 + 3x− 1 and x3 − 2x+ 3

(f) 6x3 − 3x2 + x+ 2 is not a linear combination of the other two polynomials. Suppose 6x3 − 3x2 + x+ 2 = a · (x3 − x2 +
2x + 3) + b · (2x3 − 3x + 1) = (a + 2b)x3 − ax2 + (2a − 3b)x + (3a + b) for some a, b ∈ R. Then a + 2b = 6, −a = −3,
2a−3b = 1, 3a+b = 2. However, this system does not have any solution. So 6x3−3x2+x+2 is not a linear combination
of x3 − x2 + 2x+ 3 and 2x3 − 3x+ 1

1.4.12. Show that a subset W of a vector space V is a subspace of V if and only if Span( W ) = W .
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Solution: Suppose W is a subspace of V . By the property of span, every subspace of V that contains W also contains
Span( W ). Since W ⊆ W and W is a subspace of V , we have Span( W ) ⊆ W . Trivially, we have W ⊆ Span( W ), so
W = Span( W ).

Suppose Span( W ) = W . By the property of span, W = Span( W ) is a subspace of V .

Therefore, W is a subspace of V if and only if Span( W ) = W .

1.4.13. Show that if S1 and S2 are subsets of a vector space V such that S1 ⊆ S2, then Span( S1 ) ⊆ Span( S2 ). In particular, if
S1 ⊆ S2 and Span( S1 ) = V , deduce that Span( S2 ) = V .

Solution:

(a) By the property of span, S2 ⊆ Span( S2 ), so S1 ⊆ Span( S2 ). As Span( S2 ) is a subspace of V , we have Span( S1 ) ⊆
Span( S2 ) as Span( S1 ) is the smallest subspace of V that contains S1.

(b) Suppose S1 ⊆ S2 ⊆ V and Span( S1 ) = V . Trivially, we have Span( S2 ) ⊆ V . By the previous part, we have
V = Span( S1 ) ⊆ Span( S2 ), so Span( S2 ) = V .
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