Suggested Solution 8

(1) Let $f, g \in L^p(\mu)$, $1 < p < \infty$. Show that the function

$$
\Phi(t) = \int_X |f + tg|^p \, d\mu
$$

is differentiable at $t = 0$ and

$$
\Phi'(0) = p \int_X |f|^{p-2} f g d\mu.
$$

Hint: Use the convexity of $t \mapsto |f + tg|^p$ to get

$$
|f + t g|^p - |f|^p \le t(|f + g|^p - |f|^p), \quad t > 0
$$

and a similar estimate for $t < 0$.

Solution. Recall that for any convex function φ defined on [0, 1], one has the elementary inequality

$$
\frac{\varphi(t)-\varphi(0)}{t-0}\leq \frac{\varphi(1)-\varphi(0)}{1-0},\quad \forall t\in (0,1),
$$

which could be deduced from the definition of convexity. For $p > 1, x \in X$, the function $\varphi(t) = |f(x) + tg(x)|^p$ is differentiable and convex whenever $f(x)$ and $g(x)$ are finite, which can be seen from $\varphi''(t) \geq 0$. Applying the inequality above to this particular convex function, We have

$$
\frac{1}{t}\{|f+tg|^p-|f|^p\}\leq |f+g|^p-|f|^p, \ \forall t\in(0,1).
$$

By replacing t with $-t$, we obtain a similar inequality

$$
|f|^{p} - |f - g|^{p} \le \frac{1}{t} \{|f + tg|^{p} - |f|^{p}\}, \ \forall t \in (-1, 0).
$$

Now the desired result follows from an application of Lebesgue's dominated convergence theorem.

(2) Suppose f is a measurable function on X, μ is a positive measure on X, and

$$
\varphi(p) = \int_X |f|^p \, d\mu = \|f\|_p^p \quad (0 < p < \infty).
$$

Let $E = \{p : \varphi(p) < \infty\}$. Assume $||f||_{\infty} > 0$.

- (a) If $r < p < s$, $r \in E$, and $s \in E$, prove that $p \in E$.
- (b) Prove that $\log \varphi$ is convex in the interior of E and that φ is continuous on E.
- (c) By (a), E is connected. Is E necessarily open? Closed? Can E consist of a single point? Can E be any connected subset of $(0, \infty)$?
- (d) If $r < p < s$, prove that $||f||_p \leq \max(||f||_r, ||f||_s)$. Show that this implies the inclusion $L^r(\mu) \cap L^s(\mu) \subset L^p(\mu).$
- (e) Assume that $||f||_r < \infty$ for some $r < \infty$ and prove that

$$
||f||_p \to ||f||_{\infty} \quad \text{as } p \to \infty.
$$

Solution.

(a) Write $p = \lambda r + (1 - \lambda)s$ for $0 < \lambda < 1$. By Hölder's inequality,

$$
\int_X |f|^p \, d\mu = \int_X |f|^{\lambda r} |f|(1-\lambda) s \, d\mu \le \left(\int_X |f|^r \, d\mu\right)^{\lambda} \left(\int_X |f|^s \, d\mu\right)^{1-\lambda},
$$

which shows that φ is finite on $[r, z]$. It follows that E is an interval.

(b) Rewrite the inequality above as

$$
\varphi(\lambda r + (1 - \lambda)s) \le \varphi(r)^{\lambda} \cdot \varphi(s)^{1 - \lambda}, \quad (0 < \lambda < 1).
$$

It is also true for $\lambda = 0, 1$. Hence for all $\lambda \in [0, 1]$,

$$
\log \varphi(\lambda r + (1 - \lambda)s) \le \lambda \log \varphi(r) + (1 - \lambda) \log \varphi(s).
$$

since log is increasing. Thus $log \varphi(p)$ is convex on [r, s]. Hence $\varphi(x)$ is continuous in the interior of E. It follows form monotonicity applying to $\chi_{|f|>1}f$ and $\chi_{|f|\leq 1}f$ that $\varphi(x)$ is also continuous on ∂E .

(c) Let $X = (0, \infty)$ with the Lebesgue measure. E can be any connected subset of $(0, \infty)$. The basic functions to consider are of the form x^k and $x^k |\log x|^m$ near $x = 0$ and $x = \infty$. Define

$$
g_k(x) = x^k \chi_{(0,1/2]}(x),
$$

$$
h_k(x) = x^k \chi_{(2,\infty)}(x),
$$

$$
g_{k,m}(x) = x^k |\log x|^m \chi_{(0,1/2]}(x),
$$

$$
h_{k,m}(x) = x^k |\log x|^m \chi_{(2,\infty)}(x),
$$

It is easy to see that $\int_X g_k dx < \infty$ iff $k > -1$ and $\int_X h_k dx < \infty$ iff $k < -1$. Since $|\log x| \leq C_{\varepsilon} e^{-\varepsilon}$ for $0 \leq x \leq 1$ and all $\epsilon > 0$, $\int_X g_{k,m} dx$ is finite for $k > -1$ and infinite for $k > -1$. For $k = -1$, direct computations by substituting $u = \log x$ yield

$$
\int_X g_{k,m} dx = \int_0^{1/2} x^{-1} |\log x|^m dx = \int_{\log 2}^{\infty} u^m du,
$$

which is finite iff $m < -1$. Similarly, one can show $\int_X h_{k,m} dx$ is finite for $k > -1$ and infinite for $k > -1$. If $k = -1$, the integral is finite if and only if $m < -1$. Note that $g_k^p = g_{pk}, g_{k,m}^p = g_{pk,pm}$ and similarly for h.

Now for $f = g_{-1,-2} + h_{-1,-2}$, one has $E = 1$. For $E = \emptyset$, take $f = g_{-1} + h_{-1}$. To get $E = (0, \infty)$, one may take $f = e^{-|x|}$. For $E = [1, p)$, take $f = g_{-1/p} + h_{-1,-2}$. Similarly it is easy to see that E can be any connected subset of $(0, \infty)$ for choosing f properly.

(d) From $Q2(a)$, we have

$$
||f||_p^p = \int_X |f|^p \le \left(\int_X |f|^r\right)^\lambda \left(\int_X |f|^s\right)^{1-\lambda} = ||f||_r^\lambda ||f||_s^{s(1-\lambda)}
$$

$$
\le (\max\{||f||_r, ||f||_s\})^{r\lambda} (\max\{||f||_r, ||f||_s\})^{s(1-\lambda)}
$$

$$
= \max\{||f||_r, ||f||_s\}^p
$$

Obviously, if $||f||_r < \infty$ and $||f||_s < \infty$, then $||f||_p < \infty$. Thus $L^r(\mu) \cap L^s(\mu) \subset L^p(\mu)$.

(e) Denote $E_a := \{x : a \leq |f(x)|\}$ for every $0 < a < ||f||_{\infty}$, then $0 < \mu(E_a) < \infty$. $(||f||_r < \infty$ implies $\mu(E_a) < \infty$.) Thus

$$
||f||_p = \left(\int_X |f|^p \, d\mu\right)^{1/p} \ge \left(\int_{E_a} |f|^p \, d\mu\right)^{1/p} \ge a(\mu(E_a))^{1/p},
$$

which implies \lim $\lim_{p\to\infty} ||f||_p \ge a$. Since a is arbitrary, we have $\lim_{p\to\infty} ||f||_p \ge ||f||_{\infty}$. On the other hand, for $p > r$,

$$
||f||_p = \left(\int_X |f|^{p-r} |f| r \, d\mu\right)^{1/p} \le ||f||_r^{r/p} ||f||_{\infty}^{1-r/p},
$$

which implies $\lim_{p\to\infty} ||f||_p \le ||f||_{\infty}$. In conclusion, we have

$$
\lim_{p\to\infty}||f||_{\infty} = ||f||_{\infty}.
$$

(3) Assume, in addition to the hypothesis of the last problem, that

$$
\mu(X) = 1.
$$

- (a) Prove that $||f||_r \le ||f||_s$ if $0 < r < s \le \infty$.
- (b) Under what conditions does it happen that $0 < r < s \leq \infty$ and $\|f\|_r = \|f\|_s < \infty$?
- (c) Prove that $L^r(\mu) \supset L^s(\mu)$ if $0 < r < s$. Under what conditions do these two spaces contain the same functions?
- (d) Assume that $||f||_r < \infty$ for some $r > 0$, and prove that

$$
\lim_{p \to 0} ||f||_p = \exp\left\{ \int_X \log|f| \, d\mu \right\}
$$

if $\exp\{-\infty\}$ is defined to be 0.

Solution.

(a) If $s < \infty$, the conclusion from from Hölder's inequality,

$$
\int_X |f|^r d\mu \le \left(\int_X |f|^s d\mu\right)^{r/s} \left(\int_X 1 d\mu\right)^{1-r/s} = \|f\|_s^r.
$$

If $s = \infty$, the desired result follows from

$$
||f||_r \le ||f||_{\infty} \left(\int_X 1 d\mu \right)^{1/r} = ||f||_{\infty}.
$$

- (b) From the equality sign characterization in the Hölder inequality it is easy to see that $\|f\|_r = \|f\|_s < \infty$ if and only if $|f| = \|f\|_\infty < \infty$ a.e..
- (c) We claim that under the condition $\mu(X) < \infty$, $L^r(\mu) = L^s(\mu)$ for $0 < r < s \leq \infty$ if and only if the following property (call it L) holds:

There exists $\varepsilon_0 > 0$ such that for any measurable set $E \subset X$ with $\mu(E) > 0$ we have $\mu(E) > \varepsilon_0$.

In fact, if Property L holds, let $f \in L^r(\mu)$ and denote $E_n := \{x : |f| \ge n\}$. Then there exists $n_0 \in \mathbb{N}$ such that $\mu(E_{n_0}) = 0$ and thus $f \in L^{\infty}(\mu)$. Otherwise for all n, $\mu(E_n) > 0$. Thus $\mu(\{x : |f(x)| = \infty\}) \ge \lim_{n \to \infty} \mu(E_n) \ge \varepsilon_0$ and then $||f||_r = \infty$, a contradiction.

Conversely, suppose there is a sequence of measurable sets $\{E_n\}$ with $0 < \mu(E_n) < 3^{-n}$. Without loss of generality, E_n are mutually disjoint. Denote $a_n := \mu(E_n)$ and define

$$
f = \begin{cases} \sum_{n=1}^{\infty} a_n^{-1/s} \chi_{E_n}, & \text{if } s < \infty, \\ \sum_{n=1}^{\infty} a_n^{-\frac{1}{2r}} \chi_{E_n}, & \text{if } s = \infty. \end{cases}
$$

Then $f \in L^r$ but $f \notin L^s$. The proof is completed.

(d) Note $x - 1 - \log x \geq 0$ on $[0, \infty)$ implies that

$$
\int_{\{|f|>1\}} \log |f| d\mu < \infty.
$$

If $\mu({\{|f| = 0\}}) > 0$, it suffices to proves the equality by showing $\lim_{p\to 0} ||f||_p = 0$. There is a small $s > 1$, with s' be its conjugate s.t.

$$
||f||_p = \left\{ \int_X |f|^p \chi_{\{|f| > 0\}} d\mu \right\}^{\frac{1}{p}}
$$

\n
$$
\leq (\mu\{|f| > 0\})^{\frac{1}{s'p}} ||f||_{sp} \text{ by Hölder inequality}
$$

\n
$$
\leq (\mu\{|f| > 0\})^{\frac{1}{s'p}} ||f||_r \to 0 \text{ as } p \to 0
$$

We may suppose $\infty > |f| > 0$ a.e. By Jensen's inequality, we have

$$
\log ||f||_p = \frac{1}{p} \log \int_X |f|^p \, d\mu \ge \frac{1}{p} \int_X \log |f|^p \, d\mu = \int_X \log |f| \, d\mu.
$$

On the other hand, $x - 1 - \log x \geq 0$ on $[0, \infty)$ implies $||f||_p^p - 1$ $\frac{p}{p}$ \geq log $||f||_p$. Thus

$$
\int_X \log|f| \, d\mu \le \log \|f\|_p \le \int_X \frac{|f|^p - 1}{p} \, d\mu
$$

since $\mu(X) = 1$. Note that by convexity of the map $p \mapsto |f|^p$ we have $\frac{|f|^p - 1}{p}$ $\frac{1}{p}$ is

increasing in p, which implies $\frac{|f|^p-1}{\sqrt{p}}$ $\frac{p}{p} \leq \frac{|f|^r - 1}{r}$ $\frac{e^{-t}}{r} \in L^1(\mu)$ and $\lim_{p \to 0}$ $|f|^p-1$ $\frac{1}{p} = \log|f|.$ By Lebesgue's dominated convergence theorem for $|f| > 1$ and monotone convergence theorem for $|f| < 1$, we have

$$
\lim_{p \to 0} \int_X \frac{|f|^p - 1}{p} d\mu = \lim_{p \to 0} \int_{\{|f| \ge 1\}} \frac{|f|^p - 1}{p} d\mu + \lim_{p \to 0} \int_{\{|f| < 1\}} \frac{|f|^p - 1}{p} d\mu = \int_X \log|f| \, d\mu.
$$

Thus by sandwich rule

$$
\lim_{p \to 0} ||f||_p = \exp \left\{ \int_X \log |f| \, d\mu \right\}
$$

(4) For some measures, the relation $r < s$ implies $L^r(\mu) \subset L^s(\mu)$; for others, the inclusion is reversed; and there are some for which $L^r(\mu)$ does not contain $L^s(\mu)$ is $r \neq s$. Give examples of these situations, and find conditions on μ under which these situations will occur. Solution.

First, we give examples of these situations:

- (a) For $X = [0, 1]$ with usual Lebesgue measure, we have $L^r(\mu) \supset L^s(\mu)$ if $r < s$.
- (b) For $X = \mathbb{N}$ with counting measure, we have $L^r(\mu) \subset L^s(\mu)$ if $r < s$.
- (c) For $X = \mathbb{R}$ with usual Lebesgue measure, we have $L^r(\mu) \neq L^s(\mu)$ if $r \neq s$.

Second, we give simple conditions on μ under which these situations occur correspondingly:

- (a) $\mu(X) < \infty$.
- (b) Property L in $6(c)$ holds.
- (c) $\mu(X) = \infty$ and Property L in 6(c) fails to hold.
- (5) Suppose $\mu(\Omega) = 1$, and suppose f and g are positive measurable functions on Ω such that $fg \geq 1$. Prove that

$$
\int_{\Omega} f d\mu \cdot \int_{\Omega} g d\mu \ge 1.
$$

Solution. Since $fg \geq 1$, we have $\sqrt{fg} \geq 1$ and so by Hölder's inequality,

$$
1 \leq \int_{\Omega} \sqrt{f} \sqrt{g} \, d\mu \leq \left(\int_{\Omega} f \, d\mu \right)^{1/2} \left(\int_{\Omega} g \, d\mu \right)^{1/2} = \left(\int_{\Omega} f \, d\mu \cdot \int_{\Omega} g \, d\mu \right)^{1/2}.
$$

(6) Suppose $\mu(\Omega) = 1$ and $h : \Omega \to [0, \infty]$ is measurable. If

$$
A = \int_{\Omega} h \, d\mu,
$$

prove that

$$
\sqrt{1+A^2} \le \int_{\Omega} \sqrt{1+h^2} \, d\mu \le 1+A.
$$

If μ is Lebesgue measure on [0, 1] and if h is continuous, $h = f'$, the above inequalities have a simple geometric interpretation. From this, conjecture (for general Ω) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.

Solution. The function $\phi(x) = \sqrt{1+x^2}$ is convex since its second derivative is always positive. Hence the first inequality follows from Jensen's inequality. The second equality follows from $|\Omega| = 1$ and $\sqrt{1 + x^2} \le 1 + x$ for all $x \ge 0$.

In the case that $\Omega = [0, 1]$ with μ the Lebesgue measure and $h = f'$ is continuous, then $\int_0^1 \sqrt{1 + (f')^2} dx$ is the arc length of the graph of f. Then $A = f(1) - f(0)$. The first inequality means that the straight line is the shortest path while the second inequality means the longest path is the segment from $(0, f(0))$ to $(1, f(0))$ and then going up until $(1, f(1)).$

The intuition from this suggests that the second inequality is equality if and only if $h =$ 0, *a.e.*, and the first inequality is equality if and only if $h = A$, *a.e.* The first claim is clear since √ $\overline{1+x^2} = 1+x$ iff $x = 0$. If $h = A$, a.e, then trivially the first inequality holds. Conversely if the first inequality holds, it follows from an examination of the proof of Jensen's inequality that $\phi(A) = \phi(h(x))$, *a.e.*, so $h = A$, *a.e.* since ϕ is injective on $[0, \infty)$.

(7) Optional. Suppose $1 < p < \infty$, $f \in L^p = L^p((0,\infty))$, relative to Lebesgue measure, and

$$
F(x) = \frac{1}{x} \int_0^x f(t) \, dt \quad (0 < x < \infty).
$$

(a) Prove Hardy's inequality

$$
\left\|F\right\|_p \leq \frac{p}{p-1} \left\|f\right\|_p
$$

which shows that the mapping $f \to F$ carries L^p into L^p .

- (b) Prove that equality holds only if $f = 0$ a.e.
- (c) Prove that the constant $\frac{p}{p-1}$ cannot be replaced by a smaller one.
- (d) If $f > 0$ and $f \in L^1$, prove that $F \notin L^1$.

Suggestions: (a) Assume first that $f \geq 0$ and $f \in C_c((0,\infty))$. Integration by parts gives

$$
\int_0^\infty F^p(x) dx = -p \int_0^\infty F^{p-1}(x) x F'(x) dx.
$$

Note that $xF' = f - F$, and apply Hölder's inequality to $\int F^{p-1}f$. Then derive the general case.

(c) Take $f(x) = x^{-1/p}$ on [1, A], $f(x) = 0$ elsewhere, for large A. See also Exercise 14, Chap. 8 in [R].

Solution. In fact we can show the inequality

$$
\int_0^{\infty} |F|^p \, dx \le \frac{p}{p-1} \int_0^{\infty} |f| |F|^{p-1} \, dx.
$$

(a) $\vdash ||F||_p \leq \frac{p}{p}$ $\frac{p}{p-1}$ || f || $_p, f \in \mathcal{L}^p(0,\infty), p \in (1,\infty)$

Let $f \in C_c(0,\infty), f \geq 0$, first

$$
\int_0^{\infty} F^p(x) dx = xF^p(x)|_0^{\infty} - p \int_0^{\infty} F^{p-1}F' x dx
$$

= $0 - p \int_0^{\infty} F^{p-1}(f - F) dx$,

so

$$
\int_0^\infty F^p(x)dx = \frac{p}{p-1} \int_0^\infty F^{p-1}f dx.
$$
 (1)

By Hölder's inequality,

$$
\int_0^\infty F^p(x)dx \le \frac{p}{p-1} \left\{ \int_0^\infty F^p(x)dx \right\}^{\frac{1}{q}} \|f\|_p
$$

and (a) holds.

Now, for $f \in C_c(0, \infty)$, use

$$
|F|\leq \frac{1}{x}\int_0^x |f|
$$

to get the same inequality.

Finally, for $f \in L^p(0,\infty)$, let $f_n \in C_c(0,\infty)$, $f_n \to f$ in L^p . Use an approximation argument to show $\{F_n\}$ is Cauchy and tends to F in \mathcal{L}^p norm.

(b) \vdash " = " hold iff $f = 0$ a.e.

Let f satisfy

$$
||F||_p = \frac{p}{p-1} ||f||_p.
$$

If f changes sign,

$$
\widetilde{F}(x) = \frac{1}{x} \int_0^x |f| dt
$$

$$
\|\widetilde{F}\|_p > \|F\|_p = \frac{p}{p-1} = \| |f| \|_p
$$

Impossible. Therefore $f \geq 0$ say. By an approximation argument one can show that (1) holds for $f \geq 0$, $f \in L^p$. Following the proof in (a) one see by the equality condition in Hölder's inequality that $f^p = \text{const } (F^{p-1})^q$, which implies there exists some positive constant c such that $F(x) = cf(x)$ a.e. Express this as an ODE for F and and solve it to get $f \equiv 0$ if $f \in L^p(0, \infty)$.

(c) Define

$$
f(x) = \begin{cases} x^{-1/p}, & \text{if } x \in [1, A], \\ 0, & \text{otherwise.} \end{cases}
$$

Then $||f||_p = (\log A)^{1/p}$ and

$$
F(x) = \begin{cases} 0, & \text{if } x \in (0,1), \\ \frac{p}{p-1} \left(x^{-\frac{1}{p}} - x^{-1} \right), & \text{if } x \in [1, A], \\ \frac{p}{p-1} \left(A^{1-\frac{1}{p}} - 1 \right) x^{-1}, & \text{if } x \in (A, \infty). \end{cases}
$$

Then $||F||_p^p = I_1 + I_2$, where

$$
I_1 = \int_1^A \left(\frac{p}{p-1} \left(x^{-\frac{1}{p}} - x^{-1}\right)\right)^p dx
$$

= $\left(\frac{p}{p-1}\right)^p \int_1^A \left(x^{-\frac{1}{p}} - x^{-1}\right)^p dx$

$$
I_2 = \int_A^\infty \left(\frac{p}{p-1} \left(A^{1-\frac{1}{p}} - 1\right) x^{-1}\right)^p dx
$$

= $\frac{p^p}{(p-1)^{p+1}} \left(1 - A^{\frac{1}{p}-1}\right)^p dx.$

Suppose on the contrary that the constant $\frac{p}{p-1}$ can be replaced by $\frac{\gamma p}{p-1}$ for some $\gamma \in (0,1)$. Then there exists $\delta \in (\gamma,1)$. Note that there exists $A_0 > 1$ such that for $x > A_0, x^{-\frac{1}{p}} - x^{-1} > \delta x^{-\frac{1}{p}}.$ Then for sufficiently large $A > A_0$,

$$
I_1 > \frac{\delta p}{p-1} \int_{A_0}^{A} x^{-1} dx
$$

=
$$
\frac{\delta p}{p-1} (\log A - \log A_0)
$$

$$
> \frac{\gamma p}{p-1} \log A
$$

=
$$
\frac{\gamma p}{p-1} ||f||_p^p.
$$

This implies $||F||_p > \frac{\gamma p}{p}$ $\frac{p}{p-1}$ ||p||_f if A is sufficiently large. Contradiction arises.

(d) Since $f > 0$ on $(0, \infty)$, there exists $x_0 > 0$ such that $c_0 := \int^{x_0}$ 0 $f(t) dt$. Then

$$
\int_{x_0}^{\infty} F(x) dx = \int_{x_0}^{\infty} \frac{1}{x} \int_0^x f(t) dt dx \ge \int_{x_0}^{\infty} \frac{1}{x} \int_0^{x_0} f dt dx \ge \int_{x_0}^{\infty} \frac{c_0}{x} dx = \infty,
$$

showing that $F \notin L^1$.