Suggested Solution 7

(1) Provide two proofs that C[0,1] is an infinite dimensional vector space.

Solution:

First proof. It is clear that $\{x^n : n = 0, 1, ...\}$ forms a basis for the subspace $P[0, 1] \subset C[0, 1]$ of polynomials on [0, 1]. Hence dim $C[0, 1] \ge \dim P[0, 1] = \infty$.

Second proof. Pick continuous function f_n with support inside (1/(n+1), 1/n). Clearly f_n 's are linearly independent. The subspace they form are of infinite dimension already.

(2) Show that both $C_c(0,1)$ and $C^1(0,1)$ are not closed subspaces in C[0,1] and hence they are not Banach space.

Solution: For $C_c(0,1)$, we consider $f_n, n > 1$,

$$f_n(x) = \begin{cases} 0 & \text{if } x \in (0, \frac{1}{2n}), \\ \text{linear} & \text{if } x \in [\frac{1}{2n}, \frac{1}{n}), \\ \frac{1}{2} - |x - \frac{1}{2}| & \text{if } x \in [\frac{1}{n}, 1 - \frac{1}{n}), \\ \text{linear} & \text{if } x \in [1 - \frac{1}{n}, 1 - \frac{1}{2n}), \\ 0 & \text{if } x \in [1 - \frac{1}{2n}, 1). \end{cases}$$

Obviously, $f_n \to \frac{1}{2} - |x - \frac{1}{2}|$ uniformly on (0, 1) and hence $C_c(0, 1)$ is not closed. For $C^1(0, 1)$, we consider the following example:

$$f_n(x) = \sqrt{(x - \frac{1}{2})^2 + \frac{1}{n}}$$

with

$$f'_n(x) = \frac{(x - \frac{1}{2})}{\sqrt{(x - \frac{1}{2})^2 + \frac{1}{n}}}.$$

and both are continuous on [0,1]. Obviously $f_n(x) \to f(x) := |(x-1/2)|$ pointwisely with

the limit does not belong to $C^{1}[0, 1]$. Moreover

$$\begin{aligned} f - f_n(x) &= \left| \sqrt{(x - \frac{1}{2})^2 + \frac{1}{n}} - \sqrt{(x - \frac{1}{2})^2} \right| \\ &= \left| \frac{\frac{1}{n}}{\sqrt{(x - \frac{1}{2})^2 + \frac{1}{n}}} + \sqrt{(x - \frac{1}{2})^2} \right| \\ &\leq \frac{\frac{1}{n}}{\sqrt{(x - \frac{1}{2})^2 + \frac{1}{n}}} \\ &\leq \frac{1}{\sqrt{n}} \end{aligned}$$

Hence $||f - f_n||_{\infty} \to 0$. and the $C^1(0, 1)$ is not closed

(3) Endow C[0,1] with the norm $||f|| = \int_0^1 |f(x)| dx$. Determine whether it is complete or not. Solution: The space is not complete, we consider $f_n, n > 1$,

$$f_n(x) = \begin{cases} 1 & \text{if } x \in [0, \frac{1}{2} - \frac{1}{n}), \\ \text{linear} & \text{if } x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}], \\ -1 & \text{if } x \in [\frac{1}{2} + \frac{1}{n}, 1]. \end{cases}$$
$$\forall m > n, \|f_m - f_n\| < \frac{2}{n} \to 0.$$

Then $\{f_n\}$ is Cauchy and obviously there is no $f \in C[0, 1]$ s.t. $||f - f_n|| \to 0$.

(4) Let C₀(X) be the space of all continuous functions vanishing at infinity where X be a locally compact Hausdorff space under the supernorm. A function is called vanishing at infinity if for each ε > 0, there exists a compact set K such that |f(x)| < ε for all x ∈ X \K. Show that C₀(X) is the completion of C_c(X). In other words, C₀(X) is complete and C_c(X) = C₀(X). Solution. Let C_b(X) be the space of all bounded, continuous functions in X. It is undergraduate thing to show C_b(X) is complete under the sup-norm. (You may have done it when X is ℝ, but the proof is the same.) Using C₀(X) ⊂ C_b(X), it suffices to show that C₀(X) is closed. Let {f_n} be a sequence in C₀(X) converging to some f ∈ C_b(X). For ε > 0, |f_n(x) - f(x)| ≤ ||f_n - f||_∞ < ε/2 for all x and n ≥ n₀. As f_{n₀} ∈ C₀, there exists a compact set K such that f_{n₀} < ε/2 outside K. It follows that |f| ≤ ||f_{n₀} - f||_∞ + |f_{n₀}| < ε/2 + ε/2 = ε outside K. To show that C_c is dense in C₀, let f ∈ C₀. For ε > 0, there is a compact K

such that $|f| < \varepsilon/2$ outside K. Let $\varphi \in C_c(X)$ with $K < \varphi$ and set $g = \varphi f$. Then f = g in K and $|f - g| < |f| + |g| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

(5) Show that the space of bounded sequences, ℓ^{∞} , is not separable. Hint: Consider all sequences of the form $a = (a_1, a_2, \dots)$ where $a_j \in \{0, 1\}$.

Solution. There are uncountably many sequences of the form suggested in the hint (they can be put in one-to-one correspondence with the real numbers in [0, 1] via binary representation.) And each pair have distance one. Every dense set will have nonempty intersection with each ball and so it is uncountable.

More precisely, consider a dense set S in ℓ^{∞} , for each $a \in \{0,1\}^{\mathbb{N}}$, there exists $s_a \in S$ such that $||s_a - a||_{\infty} < 0.5$. Consider the function $f : \{0,1\}^{\mathbb{N}} \to S$ defined by $f(a) := s_a$. If f(a) = f(b) for some $a, b \in \{0,1\}^{\mathbb{N}}$, then $||a - b||_{\infty} \leq ||a - f(a)||_{\infty} + ||f(b) - b||_{\infty} < 1$, whence a = b and f is injective. This shows card $(\{0,1\}^{\mathbb{N}}) \leq \operatorname{card}(S)$

(6) Let Λ be a bounded linear functional on the normed space X. Show that its operator norm

$$\|\Lambda\|_{op} = \sup\left\{\frac{\Lambda x}{\|x\|} : x \neq 0\right\}$$
$$= \inf\{M : |\Lambda x| \le M \|x\|, \ \forall x \in X\}.$$

Solution: To prove the first equality, note that

$$\|\Lambda\|_{op} = \sup\left\{\max\left(\frac{\Lambda x}{\|x\|}, \frac{\Lambda(-x)}{\|-x\|}\right) : x \neq 0\right\} = \sup\left\{\frac{\Lambda x}{\|x\|} : x \neq 0\right\}.$$

For the second, we have $|\Lambda x| \leq ||\Lambda||_{op} ||x||$, which implies

$$\|\Lambda\|_{op} \ge \inf\{M : |\Lambda x| \le M \|x\|, \ \forall x \in X\}.$$

Also, if M has $|\Lambda x| \leq M ||x||, \forall x \in X$, then $\frac{|\Lambda x|}{||x||} \leq M$, which gives $||\Lambda||_{op} \leq M$. Taking inf on both sides, we have

$$\|\Lambda\|_{op} \le \inf\{M : |\Lambda x| \le M \|x\|, \ \forall x \in X\}.$$

(7) Show that a linear functional in a normed space is bounded if and only if its kernel is closed. **Solution.** Let Λ be a bounded functional. The ker $\lambda = \Lambda^{-1}(\{0\})$ is closed by continuity. On the other hand, if y_n satisfies $||y_n|| \leq M$ but $|\Lambda y_n| \geq n$. The vectors $x_n = y_n / \Lambda y_n$ satisfies $\Lambda x_n = 1$, so $\Lambda(x_n - x_1) = 0$ for all n. But $\lim_{n \to \infty} (x_n - x_1) = -x_1$, but $\Lambda x_1 \neq 0$.

(8) For any normed space $(X, \|.\|)$, prove that $(X', \|.\|_{op})$ forms a Banach space.

Solution. It is clear that X' is a vector space and $\|\cdot\|_{op}$ is a norm on X'. It suffices to prove the completeness.

Suppose $\{\Lambda_n\}$ is Cauchy in $(X', \|\cdot\|_{op})$, i.e.

$$\forall \varepsilon > 0, \exists N \text{ such that } \forall m, n \ge N, \|\Lambda_m - \Lambda_n\|_{op} < \varepsilon.$$

For any $x \in X$, the inequality $\|\Lambda_m x - \Lambda_n x\| \leq \|\Lambda_m - \Lambda_n\|_{op} \|x\|$ shows that $\{\Lambda_n x\}$ is Cauchy in the scalar field, hence convergent. Define Λ by $\Lambda x = \lim_{n \to \infty} \Lambda_n x$. It is straightforward to verify that Λ is bounded, linear and, in view of

$$\|\Lambda_n - \Lambda\|_{op} = \sup_{\|x\|=1} |\Lambda_n x - \Lambda x| \to 0 \quad \text{as } n \to \infty,$$

we conclude that the dual space of a normed space is always complete. The completeness is in fact inherited from the completeness of the scalar field \mathbb{R} .

(9) Consider C[-1, 1] under the sup-norm. Let

$$X = \left\{ f \in C[-1,1] : \int_{-1}^{0} f = \int_{0}^{1} f = 0 \right\} ,$$

and $g\in C[-1,1]$ satisfy $\int_0^1g=1$, $\int_{-1}^0g=-1$. Establish the followings:

- (a) X is a closed subspace of C[-1, 1].
- (b) $||g f||_{\infty} > 1$, $\forall f \in X$.
- (c) $\operatorname{dist}(g, X) = 1$.

Hint: $\int_0^1 (g - f) = 0$ if and only if $g \equiv f$. This example shows that the projection property does not hold in $(C[-1, 1], \|\cdot\|_{\infty})$.

Solution. (a) is straightforward. For (b), we observe

$$\int_0^1 (g-f) = 1, \quad \forall f \in X \; .$$

Therefore, by continuity either $\max_{x \in [0,1]} (g-f)(x) > 1$ or $g-f \equiv 1$ on [0,1]. Similarly,

$$\int_{-1}^{0} (g - f) = -1$$

implies either $\min_{x \in [-1,0]} (g-f)(x) < -1$ or $g-f \equiv -1$ on [-1,0]. Since g is continuous, it cannot equal to 1 on [0,1] and -1 on [-1,0], either $\max_{x \in [0,1]} (g-f)(x) > 1$ or $\min_{x \in [-1,0]} (g-f)(x) < -1$ must hold, so $||g-f||_{\infty} > 1$. This is (b).

(c) It suffices to find a sequence $\{f_n\}$ in X such that $||g - f_n||_{\infty} \to 1$. Define a continuous function $h_n : [0, 1] \to \mathbb{R}$ by

$$h_n(x) := \begin{cases} 0 & \text{if } x = 0\\ \text{linear} & \text{if } x \in (0, \delta_n)\\ 1 + \frac{1}{n} & \text{if } x \in [\delta_n, 1] \end{cases}$$

where δ_n is a small number such that $\int_0^1 h_n \ge 1 + \frac{1}{2n}$. The function $\Phi : [0,1] \to \mathbb{R}$ defined by $\Phi(\theta) := \int_0^1 (g - \theta h_n)$ is continuous. As $\Phi(0) = 1 > 0$ and $\Phi(1) \le 1 - (1 + \frac{1}{2n}) < 0$, by the intermediate value theorem there exists $\theta_0 \in [0,1]$ such that $\Phi(\theta_0) = 0$. If we define $f_n := g - \theta_0 h_n$, then $\int_0^1 f_n = 0$ and $||g - f_n||_{\infty} = \theta_0 \cdot ||h_n||_{\infty} \le 1 + \frac{1}{n}$. We can define $f_n|_{[-1,0]}$ similarly, so that the resulting f_n is continuous on [-1,1] with $f_n(0) = g(0), f_n \in X$, and $||g - f_n||_{\infty} \le 1 + \frac{1}{n}$. Together with (b), we get $||g - f_n||_{\infty} \to 1$.

(10) Let X be a Hilbert space and X_1 a proper closed subspace. For x_0 lying outside X_1 , let $d = ||x_0 - z||$ where d is the distance from x_0 to X_1 . Show that

$$\langle x, z - x_0 \rangle = 0, \quad \forall x \in X_1.$$

Hint: For $x \in X_1$, one has $\frac{d}{dt}\phi(t) = 0$ at t = 0 where $\phi(t) = ||z_0 + tx - x_0||^2$. Why?

Solution. Since $\phi(t)$ attains its minimum at t = 0, we have $\phi'(0) = 0$. It is easy to see that

$$\phi'(t) = \frac{d}{dt} \langle z_0 + tx - x_0, z_0 + tx - x_0 \rangle$$
$$= 2 \langle x, z_0 + tx - x_0 \rangle.$$

Putting t = 0 yields the result.

(11) Show that the correspondence $\Lambda \mapsto w$ in Theorem 4.8 is norm preserving.

Solution. By Cauchy-Schwarz inequality, $\forall x \in X$,

$$|\Lambda(x)| = |\langle x, w \rangle| \le ||x|| ||w||$$

With equality holds when x = w. Hence $\|\Lambda\|_{op} = \|w\|$ and the map is norm preserving.

(12) Let Λ_1 and Λ_2 be two bounded linear functionals on the Hilbert space X. Suppose that they have the same kernel. Prove that there exists a nonzero constant c such that $\Lambda_2 = c\Lambda_1$. Use this fact to give a proof of Theorem 4.8

Solution. We may suppose kernel of Λ_1 and Λ_2 is a proper subspace of X and $\exists x_0 \in X, \Lambda_1(x_0), \Lambda_2(x_0) \neq 0$, then $\forall x \in X$,

$$\Lambda_1 \left(x - \frac{\Lambda_1(x)}{\Lambda_1(x_0)} x_0 \right) = \Lambda_1(x) - \frac{\Lambda_1(x)}{\Lambda_1(x_0)} \Lambda_1(x_0)$$

= 0.

As the two functionals have the same kernel, we have

$$\Lambda_2 \left(x - \frac{\Lambda_1(x)}{\Lambda_1(x_0)} x_0 \right) = \Lambda_2(x) - \frac{\Lambda_1(x)}{\Lambda_1(x_0)} \Lambda_2(x_0)$$

= 0.

Hence

$$\Lambda_2 = \frac{\Lambda_2(x_0)}{\Lambda_1(x_0)} \Lambda_1.$$

Now Let Λ be a non zero bounded linear functional on X and x_0 not in $ker\Lambda$, then $\exists z \in ker\Lambda$ s.t.

$$\langle x, x_0 - z \rangle = 0, \forall x \in ker\Lambda.$$

Theorem 4.8 follows by letting $\Lambda(x) = \Lambda_2(x)$ and $\langle x, x_0 - z \rangle = \Lambda_1(x)$.