Suggested Solution 6

(1) In the proof of Lusin's Theorem (Theorem 2.12), it was assumed that f is non-negative, bounded and A is compact. Complete the proof by showing the conclusion still holds when f is finite a.e. and A is of finite measure.

Solution: We divide the proof into three steps.

Step 1. Assume that f is bounded and supported on a compact set A. Write $f = f^+ - f^-$. Then both f^+ and f^- are bounded and supported on A. Then by what is proved in Theorem 2.12, the conclusion of Lusin's Theorem holds in this situation.

Step 2. Assume that f is bounded and vanishes outside a measurable set A with $\mu(A) < \infty$. Let $\epsilon > 0$ be fixed. By the regularity of μ , there exists a compact set K and an open set G such that $K \subset A \subset G$ and $\mu(G\backslash K) < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$. By Urysohn's Lemma, there exists $h \in C_c(X)$ such that $K < h < G$

Now we apply Step 1 to $f|_K$, we have there exists $g \in C_c(X)$ such that

$$
\mu\left(\left\{x \in X : g(x) \neq f|_K(x)\right\}\right) < \frac{\epsilon}{2}.
$$

Observe that $gh \in C_c(x)$, $gh \equiv g$ on K and $gh \equiv 0$ outside G. Hence we have

$$
\{x: g(x)h(x) \neq f(x)\} \subseteq \{x: g(x) \neq f|_K(x)\} \cup (G\backslash K)
$$

Therefore,

$$
\mu({x : g(x)h(x) \neq f(x)} \le \mu({x : g(x) \neq f|_K(x)}) + \mu(G\backslash K)
$$

$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
$$

Step 3. Assume that f is finite a.e. and vanishes outside a measurable set A with $\mu(A) < \infty$. For each $n \geq 1$, we define

$$
f_n(x) := \begin{cases} f(x) & \text{if } |f(x)| \le n \\ n \cdot \text{sign } f(x) & \text{otherwise} \end{cases}
$$

Then we have $f_n(x) \to f(x)$ for every $x \in X$. Note that

$$
\{x : f_n(x) \neq f(x)\} \subseteq \{x : |f(x)| > n\}
$$

Since f is finite a.e., supported on A and $\mu(A) < \infty$, we have

$$
\mu({x : |f(x)| > n}) \downarrow 0, \text{ as } n \to \infty.
$$

Hence there exists n_0 , such that

$$
\mu\left(\{x:f_{n_0}(x)\neq f(x)\}\right)<\frac{\epsilon}{2}.
$$

Apply the result of Step 2 to f_{n_0} , we get a $g \in C_c(X)$ such that

$$
\mu\left(\{x: g(x) \neq f_{n_0}(x)\}\right) < \frac{\epsilon}{2}.
$$

Note that

$$
\{x : g(x) \neq f(x)\} \subseteq \{x : g(x) = f_{n_0}(x), f_{n_0}(x) \neq f(x)\} \cup \{x : g(x) \neq f_{n_0}(x)\}\
$$

Hence we have $\mu({x : g(x) \neq f(x)} \geq \epsilon$, completing the proof.

(2) Let μ be a Riesz measure on \mathbb{R}^n . Show that for every measurable function f, there exists a sequence of continuous functions $\{f_n\}$ such that $f_n \to f$ almost everywhere.

Solution: For each $k \geq 1$, we define a set $B_k := \{x \in \mathbb{R}^n : |x| \leq k\}$ and a function

$$
f_k(x) := \begin{cases} f(x) & \text{if } x \in B_k \text{ and } |f(x)| \le k \\ k \cdot \text{sign } f(x) & \text{if } x \in B_k \text{ and } |f(x)| > k \\ 0 & \text{otherwise.} \end{cases}
$$

Then it is easy to see that $f_k(x) \to f(x)$ at every $x \in \mathbb{R}^n$. Note that f_k is bounded and supported on a set of finite measure, we can apply the result of Exercise (1) to get a $g_k \in C_c(\mathbb{R}^n)$, such that

$$
\mu(\{x \in \mathbb{R}^n : f_k(x) \neq g_k(x)\}) < \frac{1}{2^k}.
$$

Let $A_k = \{x \in \mathbb{R}^n : g_k(x) \neq f_k(x)\}.$ Then by the Borel-Cantelli Lemma, we have for almost every $x \in \mathbb{R}^n, x \in A_k$ for finite many k. As a consequence, we have $g_k \to f$ a.e..

(3) Here we construct a Cantor-like set, or a Cantor set with positive measure, with positive measure by modifying the construction of the Cantor set as follows. Let $\{a_k\}$ be a sequence of positive numbers satisfying

$$
\gamma \equiv \sum_{k=1}^{\infty} 2^{k-1} a_k < 1.
$$

Construct the set S so that at the kth stage of the construction one removes 2^{k-1} centrally situated open intervals each of length a_k . Establish the facts:

(a) $\mathcal{L}^1(\mathcal{S}) = 1 - \gamma$,

- (b) $\mathcal S$ is compact and nowhere dense,
- (c) \mathcal{S} is perfect hence uncountable.

Note. A set A is perfect if for every $x \in A$ and $\epsilon > 0$, $(B_{\epsilon}(x) \setminus \{x\}) \cap A \neq \emptyset$, that is, every point in A is an accumulation point of A . It is known that a perfect set must be uncountable. Solution:

(a) As the intervals removed at the same stage or different stages are mutually disjoint, we have

$$
\mathcal{L}^{1}(\mathcal{S}) = 1 - \sum_{k=1}^{\infty} 2^{k-1}
$$
 length of interval removed in the k th stage
=
$$
1 - \sum_{k=1}^{\infty} 2^{k-1} a_k
$$

=
$$
1 - \gamma.
$$

(b) Let S_n be the set of points left in [0, 1] after the *n*-th level construction. Then S_n is descending and $S = \bigcap_{n=1}^{\infty} S_n$. Notice that S_n is a union of 2^n mutually disjoint closed intervals hence is compact. Hence S is compact. The 2^n components of S_n are of the same length

$$
b_n = 2^{-n} \left(1 - \sum_{k=1}^n 2^{k-1} a_k \right)
$$

Clearly $b_n \to 0$ as $n \to \infty$. Hence S does not have an interior point, since otherwise S will contain an open interval which is also contained in every S_n , which is impossible since $b_n \to \infty$ as $n \to \infty$. Hence S is nowhere dense.

(c) If $x \in S$, then x belongs some connected component of $S_n, \forall n \in \mathbb{N}$. Observe that the end points of the 2^n intervals of S_n are in S , so $\exists y_n$ end point of one of the interval s.t.

$$
|y_n - x| \le b_n \to 0 \text{ as } n \to \infty
$$

We have S is a perfect set.

(4) Let $0 < \varepsilon < 1$. Construct an open set $G \subset [0,1]$ which is dense in $[0,1]$ but $\mathcal{L}^1(G) = \varepsilon$.

Solution: Similar to the construction of Cantor's familiar "middle thirds" set. Define $K_0 = [0, 1]$ and inductively define $K_n \subset K_{n-1}$ by removing an open interval of length $2(1 - \varepsilon)2^{-2n}$. By the construction each K_n has 2^n connected components with length a_n which satisfy

$$
\begin{cases}\n a_n = \frac{1}{2} (a_{n-1} - 2\varepsilon 2^{-2n}), & n = 1, 2, \dots \\
a_0 = 1\n\end{cases}
$$

from which we get $a_n = (1 - \varepsilon)2^{-n} + \varepsilon 2^{-2n}$. Thus

$$
\mathcal{L}^1(K) = \lim_{n \to \infty} \mathcal{L}^1(K_n) = \lim_{n \to \infty} 2^n a_n = 1 - \varepsilon
$$

Take $G = [0,1] \backslash K$, then $\mathcal{L}^1(G) = \varepsilon$. On the other hand, G is dense in [0, 1] since the interior of K is empty.

(5) Let A be the subset of $[0, 1]$ which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $\mathcal{L}^1(A)$.

Solution: Let $B = \{0, 1, 2, 3, 5, 6, 7, 8, 9\}$, the set $F_0 = \{x \in [0, 1] : x = 0.4a_2a_3\cdots, a_j = 0.4a_ja_j\cdots, a_j\}$ $[0, 1, 2, \cdots, 9] = [\frac{4}{10}, \frac{5}{10}]$ $\frac{5}{10}$ is of Lebesgue measure $\frac{1}{10}$. Fix $y_1 \in B$, $|B| = 9^1 = 9$, the set $F_{y_1} = \{x \in [0,1] : x = 0. y_1 4 a_3 \cdots, a_j = 0, 1, 2, \cdots, 9 \forall j \geq 3\} = \left[\frac{y_1}{10} + \frac{4}{10}\right]$ $\frac{4}{100}, \frac{y_1}{10}$ $\frac{y_1}{10} + \frac{5}{10}$ $\frac{1}{100}$ is of Lebesgues measure $\frac{1}{100}$. Fix $(y_1, y_2) \in B^2$, $|B^2| = 9^2 = 81$, the set $F_{(y_1, y_2)} = \{x \in [0, 1]:$ $x = 0.y_1y_24a_4\cdots$, $a_j = 0, 1, 2, \cdots, 9\forall j \ge 4$ is of measure $\frac{1}{1000}$. Continuing the process, we have ∞

$$
A = [0,1] \setminus (\bigcup_{n=1}^{\cdot} \bigcup_{(y_1,y_2,\cdots,y_n)\in B^n} F_{(y_1,y_2,\cdots,y_n)} \cup F_0)
$$

and as all $F_{(y_1, y_2, \cdots, y_n)}$, F_0 are disjoint, we have

$$
\mathcal{L}^{1}(A) = 1 - \frac{1}{10} - \sum_{n=1}^{\infty} \sum_{(y_1, y_2, \dots, y_n) \in B^n} \frac{1}{10^{n+1}}
$$

$$
= 1 - \frac{1}{10} - \sum_{n=1}^{\infty} \frac{9^n}{10^{n+1}}
$$

$$
= 0.
$$

(6) Let N be a Vitali set in [0, 1]. Show that $\mathcal{M} = [0, 1] \setminus \mathcal{N}$ has measure 1 and hence deduce that

$$
\mathcal{L}^1(\mathcal{N}) + \mathcal{L}^1(\mathcal{M}) > \mathcal{L}^1(\mathcal{N} \cup \mathcal{M}).
$$

Remark: I have no idea what $\mathcal{L}^1(\mathcal{N})$ is, except that it is positive.

Solution: We first prove that every Lebesgue measurable subset of N must be of measure zero. Let A be a Lebesgue measurable subset of $\mathcal{N}, \{A+q\}_{q\in\mathbb{Q}\cap[0,1)}$ is a sequence of disjoint measurable set contained inside $[-1, 2]$. By translational invariance of Lebesgue measure,

$$
\mathcal{L}^1(\bigcup_{q\in\mathbb{Q}\cap[0,1)}A+q)=\sum_{q\in\mathbb{Q}\cap[0,1)}\mathcal{L}^1(A+q)=\sum_{q\in\mathbb{Q}\cap[0,1)}\mathcal{L}^1(A)<\infty,
$$

Therefore we must have

$$
\mathcal{L}^1(A) = 0.
$$

We try to prove by contradiction, suppose there is an open set G s.t. $\mathcal{L}^1(G) = 1 - \varepsilon < 1$ and $G \supseteq \mathcal{N}^c$. Then $[0,1] \setminus G$ is a measurable subset of $\mathcal N$ satisfying

$$
0 < \varepsilon = \mathcal{L}^1([0,1]) - \mathcal{L}^1(G) \le \mathcal{L}^1([0,1] \setminus G).
$$

Contradicting to our previous result.

(7) Let E be a subset of R with positive Lebsegue measure. Prove that for each $\alpha \in (0,1)$, there exists an open interval I so that

$$
\mathcal{L}^1(E \cap I) \ge \alpha \mathcal{L}^1(I).
$$

It shows that E contains almost a whole interval. Hint: Choose an open G containing E such that $\mathcal{L}^1(E) \ge \alpha \mathcal{L}^1(G)$ and note that G can be decomposed into disjoint union of open intervals. One of these intervals satisfies our requirement.

Solution: As $\exists n \in \mathbb{N}$ s.t. $\mathcal{L}^1(E \cap (-n, n)) > 0$, WLOG we may assume that E has finite outer measure, then $\forall \alpha \in (0,1)$, \exists open G s.t. $G \supseteq E$ and

$$
\mathcal{L}^1(E) + \frac{(1-\alpha)}{\alpha} \mathcal{L}^1(E) \ge \mathcal{L}^1(G),
$$

Hence

$$
\mathcal{L}^1(E) \ge \alpha \mathcal{L}^1(G).
$$

we can write $G = \bigcup_{n=1}^{\infty} G_n$ $i=1$ I_i where I_i are disjoint open intervals. Then one of these I_i must satisfy the desired property, otherwise

$$
\mathcal{L}^1(E) \le \sum_{i=1}^{\infty} \mathcal{L}^1(E \cap I_i) < \alpha \sum_{i=1}^{\infty} \mathcal{L}^1(I_i) = \alpha \mathcal{L}^1(G) < \infty,
$$

contradicting the above inequality.

- (8) Let E be a measurable set in R with respect to \mathcal{L}^1 and $\mathcal{L}^1(E) > 0$. Show that $E-E$ contains an interval $(-a, a)$, $a > 0$. Hint:
	- (a) U, V open, with finite measure, $x \mapsto L^1((x+U) \cap V)$ is continuous on R.
	- (b) A, B measurable, $\mu(A), \mu(B) < \infty$, then $x \mapsto L^1((x + A) \cap B)$ is continuous. For $A \subset U, B \subset V$, try

$$
\mathcal{L}^1((x+U)\cap V) - \mathcal{L}^1((x+A)\cap B)| \leq \mathcal{L}^1(U\setminus A) + \mathcal{L}^1(V\subset B).
$$

(c) Finally, $x \mapsto \mathcal{L}^1((x+E) \cap E)$ is positive at 0 and if $(x+E) \cap E \neq \emptyset$, then $x \in E \setminus E$.

Solution:

(a) We prove the case when U is an open interval I, note for all subset A, B of \mathbb{R} ,

$$
((x+A)\cap B)\setminus (((y+A)\cap B))=(x+A)\setminus (y+A)\cap B
$$

Therefore

$$
\left|\mathcal{L}^1((x+I)\cap V)-\mathcal{L}^1((y+I)\cap V)\right|\leq \mathcal{L}^1((x+I)\setminus (y+I))+\mathcal{L}^1((y+I)\setminus (x+I))\leq 4|x-y|.
$$

the function is Lipschitz and continuous. In general U can be written as countable union of disjoint open intervals $\{I_i\}$, as $\sum_{i=1}^{\infty}$ $i=1$ $\ell(I_i) < \infty, \exists N \text{ s.t. for all } k \geq N,$

$$
\sum_{i=k}^{\infty} \ell(I_i) < \varepsilon.
$$

We have

$$
\sum_{i=1}^{\infty} \mathcal{L}^1((x+I_i) \cap V) - \mathcal{L}^1((y+I_i) \cap V) \le \sum_{i=1}^{k} \mathcal{L}^1((x+I_i) \cap V) - \mathcal{L}^1((y+I_i) \cap V) + 2\varepsilon < 3\varepsilon
$$

for x sufficiently close to y . Similarly

$$
\sum_{i=1}^{\infty} \mathcal{L}^1((y+I_i) \cap V) - \mathcal{L}^1((x+I_i) \cap V) \leq 3\varepsilon.
$$

We have the function $\mathcal{L}^1((x+U) \cap V)$ is continuous.

(b) Obviously, $((x+U) \cap V) \setminus ((x+A) \cap B) \subseteq U \setminus A \cup V \setminus B$. Therefore, we have

$$
0 \leq \mathcal{L}^1((x+U) \cap V) - \mathcal{L}^1((x+A) \cap B) \leq \mathcal{L}^1(U \setminus A) + \mathcal{L}^1(V \setminus B).
$$

Note RHS is independent on x, y , so the result follow from outer regularity of Lebesgue measure.

(c) the function $\mathcal{L}^1((x+E)\cap E)$ is continuous and positive at 0, $\exists a>0$ s.t the function remain positive on $(-a, a)$, i.e

$$
(x+E)\cap E\neq\emptyset
$$

and $\forall x \in (-a, a), \exists e_1 e_2 \in E$ s.t

$$
x = e_1 - e_2 \in E - E.
$$

Alternate proof. The following is a simple proof due to Karl Stromberg.

By the regularity of \mathcal{L}^1 , for every $\varepsilon > 0$ there are a compact set $K \subset E$ and an open set $U \supset E$ such that

$$
\mathcal{L}^1(K) + \varepsilon > \mathcal{L}^1(E) > \mathcal{L}^1(U) - \varepsilon.
$$

For our purpose it is enough to choose K and U such that

$$
2\mathcal{L}^1(K) > \mathcal{L}^1(U).
$$

Since $K \subset U$, there is an open cover of K that is contained in U. Since K is compact, one can choose a small neighborhood V of 0 such that

$$
K+V\subset U.
$$

Let $v \in V$, and suppose

$$
(K + v) \cap K = \emptyset.
$$

Then,

$$
2\mathcal{L}^1(K) = \mathcal{L}^1(K+v) + \mathcal{L}^1(K) < \mathcal{L}^1(U),
$$

contradicting our choice of K and U. Hence for all $v \in V$ there exists $k_1, k_2 \in K \subset E$ such that

$$
k_1+v=k_2,
$$

which means that $V \subset E - E$.

(9) Give an example of a continuous map ϕ and a measurable f such that $f \circ \phi$ is not measurable. Hint: The function $h = x + g(x)$ where g is the Cantor function is a continuous map from $[0, 1]$ to $[0, 2]$ with a continuous inverse.

Solution: Let $h = x + g(x)$ where g is the Cantor function. Then $h : [0,1] \rightarrow [0,2]$ is a strictly monotonic and continuous map, so its inverse $\phi = h^{-1}$ is continuous too. Since g is constant on every interval in the complement of C , one has that h maps such an interval to an interval of the same length. Hence $\mu(h(C)) = 1$, where C is the cantor set. Then $h(C)$ contains a non-measurable set A due to Proposition 3.3. Let $B = \phi(A)$. Set $f = \chi_B$. Then $f \circ \phi$ is not measurable since its inverse image of 1 is A.