Suggested Solutions to Exercise 3

Standard notations are in force.

(1) Prove the conclusion of Lebsegue's dominated convergence theorem still holds when the condition " ${f_k}$ converges to f a.e." is replaced by the condition " ${f_k}$ converges to f in measure".

Solution. Suppose on the contrary that $\int |f_k - f| d\mu$ does not tend to zero. By considering the limit supremum of the sequence, we can find a positive constant M and a subsequence $\{f_{n_j}\}\$ such that

$$
\int |f_{n_j} - f| d\mu \ge M
$$

for all j. By Prop 1.17, a subsequence $\{g_k\}$ of $\{f_{n_j}\}$ converges to f a.e.. By Lebsegue's dominated convergence theorem, we have

$$
0 = \lim_{k \to \infty} \int |g_k - f| d\mu \ge M > 0,
$$

contradiction holds.

- (2) Find an example in each of the following cases.
	- (a) A sequence which converges in measure but not at every point.
	- (b) A sequence which converges pointwisely but not in measure.
	- (c) A sequence which converges in measure but not in L^1 .

Solution.

(a) Take $X = [0, 1]$ and the Lebesgue measure. Basically, let $f_1 = \chi_{[0, 1/2]}$, $f_2 =$ $\chi_{[1/2,1]}, f_3 = \chi_{[0,1/2^2]}, f_4 = \chi_{[1/2^2,1/2]}, f_5 = \chi_{[1/2,3/2^2]}, f_6 = \chi_{[3/2^2,1]}, \cdots$

- (b) According to Proposition 1.18, the measure cannot be finite. Take $X =$ R and the Lebesgue measure. Consider $g_n = \chi_{[n,n+1]}$. We have $g_n(x) \to$ 0 for all x but not in measure.
- (c) Take $X = \mathbb{R}$ and the Lebesgue measure. Consider $h_n = n^2 \chi_{[0,1/n]}$. Then $h_n \to 0$ in measure but not in L^1 .
- (3) Let $f_n, n \geq 1$, and f be real-valued measurable functions in a finite measure space. Show that $\{f_n\}$ converges to f in measure if and only if each subsequence of $\{f_n\}$ has a subsubsequence that converges to f a.e..

Solution. Let μ be the measure in a finite measure space. If $\{f_n\}$ converges to f in measure, then every subsequence $\{f_{n_k}\}\$ also converges to f in measure. By Prop 1.17, the subsequence $\{f_{n_k}\}\$ has a sub-subsequence converging to f a.e..

Now suppose that each subsequence of $\{f_n\}$ has a sub-subsequence that converges to f a.e.. Assume that f_n does not converge to f in measure. By considering the limit supremum, there are positive ρ , M and subsequence ${f_{n_j}}$ such that, $\mu({x : |f_{n_j}(x) - f(x)| \ge \rho}) \ge M$, for all j. However, a subsequence $\{g_k\}$ of $\{f_{n_j}\}$ converges to f a.e. and by Prop 1.18, $\{g_k\}$ converges to f in measure and

$$
0 = \lim_{k \to \infty} \mu(\{x : |g_k(x) - f(x)| \ge \rho\}) \ge M > 0,
$$

which is impossible. Hence $\{f_n\}$ converges to f in measure.

(4) Let (X, \mathcal{M}, μ) be a measure space. Let $\widetilde{\mathcal{M}}$ contain all sets E such that there exist $A, B \in \mathcal{M}, A \subset E \subset B, \mu(B \backslash A) = 0$. Show that $\widetilde{\mathcal{M}}$ is a σ -algebra containing M and if we set $\widetilde{\mu}(E) = \mu(A)$, then $(X, \widetilde{\mathcal{M}}, \widetilde{\mu})$ is a complete measure space.

Solution. We see that $\widetilde{\mathcal{M}}$ contains M by taking $E = A = B$ for any $E \in$ M. Suppose $E_i \in \mathcal{M}$, $B_i \subseteq E_i \subseteq A_i$ where $B_i, A_i \in \mathcal{M}$ and $\mu(A_i \backslash B_i) = 0$, then

$$
\bigcap_{i=1}^{\infty} B_i \subseteq \bigcap_{i=1}^{\infty} E_i \subseteq \bigcap_{i=1}^{\infty} A_i
$$

and

$$
\mu(\bigcap_{i=1}^{\infty} A_i \setminus \bigcap_{i=1}^{\infty} B_i) \leq \mu(\bigcup_{i=1}^{\infty} A_i \setminus B_i) \leq \sum_{i=1}^{\infty} \mu(A_i \setminus B_i) = 0.
$$

We have \bigcap^{∞} $i=1$ E_i is in M. If $A \supseteq E \supseteq B$, then

$$
X \backslash A \subseteq X \backslash E \subseteq X \backslash B
$$

and

$$
\mu((X \backslash B) \backslash (X \backslash A)) = \mu(A \backslash B).
$$

Hence $X\backslash E$ is in $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{M}}$ is a σ algebra. We check that $\widetilde{\mu}$ is a measure on \widetilde{M} . Obviously $\widetilde{\mu}(\phi) = 0$. Let E_i be mutually disjoint $\widetilde{\mu}$ measurable set, $\exists B_i, A_i \mu$ measurable s.t

$$
A_i \subseteq E_i \subseteq B_i
$$

and

$$
\mu(B_i \setminus A_i) = 0.
$$

Using above argument, we have $\mu(\bigcup_{k=1}^{\infty} \mathbb{R}^k)$ $i=1$ $B_i \setminus \bigcup^{\infty}$ $i=1$ A_i) = 0, And A_i are mutually disjoint,

$$
\widetilde{\mu}(\bigcup_{i=1}^{\infty} E_i) = \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \widetilde{\mu}(E_i).
$$

So $\widetilde{\mu}$ is a measure on \widetilde{M} .

Finally, we check that $\tilde{\mu}$ is a complete measure, let E be a $\tilde{\mu}$ measurable and null set, for all subset $C \subseteq E$, we have $\exists A, B \in \mathcal{M}$ s.t. $A \subseteq E \subseteq B$ and $\mu(A) = \mu(B) = 0$. Therefore

$$
\phi \subseteq C \subseteq B
$$

and

$$
\mu(B)=0.
$$

We have $C \in \widetilde{\mathcal{M}}$.

(5) Show that $\widetilde{\mathcal{M}}$ in the previous problem is the σ -algebra generated by $\mathcal M$ and all subsets of measure zero sets in M.

Solution. Let \mathcal{M}_1 be the σ -algebra generated by \mathcal{M} and all subsets of measure zeros sets in \mathcal{M} .

By definition, $\widetilde{\mathcal{M}}$ contains all the sets in $\mathcal M$ and all subsets of measure zero sets in M . Since M_1 is the smallest such σ -algebra, we have $M_1 \subset \overline{M}$.

To prove that $\widetilde{\mathcal{M}} \subset \mathcal{N}$, we let $E \in \widetilde{\mathcal{M}}$. Then there exist $A, B \in \mathcal{M}$ such that $A \subset E \subset B$ and $\mu(B \setminus A) = 0$. Then $E \setminus A \subset B \setminus A$ is a subset of a measure zero set. Now $E = A \cup (E \setminus A)$ is a union of a set in M and a subset of a measure zero set. Hence, $E \in \mathcal{M}_1$.

(6) Here we consider an application of Caratheodory's construction. An algebra A on a set X is a subset of \mathcal{P}_X that contains the empty set and is closed under taking complement and finite union. A premeasure $\mu : \mathcal{A} \to [0, \infty]$ is a finitely additive function which satisfies: $\mu(\phi) = 0$ and $\mu(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k)$ whenever E_k are disjoint and $\bigcup_{k=1}^{\infty} E_k \in \mathcal{A}$. Show that the premeasure μ can be extended to a measure on the σ -algebra generated by \mathcal{A} . Hint: Define the outer measure

$$
\overline{\mu}(E) = \inf \big\{ \sum_{k} \mu(E_k) : E \subset \bigcup_{k} E_k, E_k \in \mathcal{A} \big\}.
$$

This is called Hahn-Kolmogorov theorem.

Solution. We follow the proof from Terence Tao's book "Introduction To Measure Theory". Define $\overline{\mu}$ as above and obviously $\overline{\mu}$ is an outer measure on power set of X. By Caratheodory's construction, we get a measure defined on a σ - algebra M. We claim that $A \subseteq M$, let $E \in \mathcal{A}$ and $C \subseteq X$ such that $\overline{\mu}(C) < \infty$, for all $\varepsilon > 0$, there is $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{A}$ covering C such that

$$
\overline{\mu}(C) + \varepsilon > \sum_{i=1}^{\infty} \mu(E_i).
$$

As ${E_i \cap E}_{i=1}^{\infty}$ and ${E_i \setminus E}_{i=1}^{\infty}$ are subset of A and cover $C \cap E$ and $C \setminus E$ respectively, we have,

$$
\overline{\mu}(C \cap E) \leq \sum_{i=1}^{\infty} \mu(E_i \cap E),
$$

and

$$
\overline{\mu}(C \setminus E) \le \sum_{i=1}^{\infty} \mu(E_i \setminus E).
$$

Using the fact that μ is a premeasure, $\mu(E_i \cap E) + \mu(E_i \setminus E) = \mu(E_i)$. Summing over i, we know that E is in M and M contains the σ algebra generated by A. Now we try to show that the measure induced extends μ , obviously by definition $\overline{\mu}(E) \leq \mu(E)$. Let $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{A}$ covering E. Without affecting the countable union, we may make ${E_i}_{i=1}^{\infty}$ disjoint and obtain ${B_i}_{i=1}^{\infty}$. Furthermore, by taking intersection with E , we have

$$
\bigcup_{i=1}^{\infty} B_i \cap E = E
$$

and

$$
\sum_{i=1}^{\infty} \mu(E_i) \ge \sum_{i=1}^{\infty} \mu(B_i) \ge \sum_{i=1}^{\infty} \mu(B_i \cap E) = \mu(E),
$$

where the last equality follows from the condition of μ . Hence $\overline{\mu}(E) \ge \mu(E)$

and the measure extends μ .

The following problems are concerned with the Lebesgue measure. Let $R =$ $I_1 \times I_2 \times \cdots \times I_n$, I_j bounded intervals (open, closed or neither), be a rectangle in \mathbb{R}^n . More properties of the Lebesgue measure can be found in Exercise 4.

(7) For a rectangle R in \mathbb{R}^n , define its "volume" to be

$$
|R| = (b_1 - a_1) \times (b_2 - a_2) \times \cdots \times (b_n - a_n)
$$

where b_i , a_i are the right and left endpoints of I_j . Show that

(a) if
$$
R = \bigcup_{k=1}^{N} R_k
$$
 where R_k are almost disjoint, then

$$
|R| = \sum_{k=1}^{N} |R_k|.
$$

N

 $_{k=1}$

 $|R_k|$.

(b) If
$$
R \subset \bigcup_{k=1}^{N} R_k
$$
, then $|R| \le \sum_{k=1}^{N} R_k$

Solution.

(a) Take $n = 2$ for simplicity. Each rectangle is of the form $[a, b] \times [c, d]$. We order the endpoints of the x-coordinates of all rectangles R_1, \dots, R_N into $a_1 < a_2 < \cdots < a_n$ and y-coordinates into $b_1 < b_2 < \cdots < b_m$. This division breaks R into an almost disjoint union of subrectangles $R_{j,k} = [a_j, a_{j+1}] \times$ $[b_k, b_{k+1}]$. Note that each $R_{j,k}$ is contained in exactly one R_l and each R_l is an almost disjoint union of subrectangles from this division. We have

$$
|\mathbb{R}| = (a_n - a_1)(b_m - b_1)
$$

= $(a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_2 - a_1)(b_m - b_{m-1} + b_{m-1} + \dots + b_2 - b_1)$
= $\sum_{j,k} |R_{j,k}|$
= $\sum_{l} \sum_{R_{j,k} \subseteq R_l} |R_{j,k}|$
= $\sum_{l} |R_l|$,

(b) The proof is similar to that of (a), but now we need to subdivide R_i and R together. Now, $R \subseteq \left\lfloor \right.$ N $j=1$ R_j . We order all x-coordinates of R_j , R into $a_1 < a_2 < \cdots < a_N$ and and y-coordinates into $b_1 < b_2 < \cdots < b_M$. Then R is the union of parts of $R_{k,j}$

$$
|R| = \sum_{R_{j,k} \subseteq R} |R_{j,k}|
$$

\n
$$
\leq \sum_{j,k} |R_{j,k}|
$$

\n
$$
\leq \sum_{j} |R_{j}|,
$$

where the last inequality follows from the fact that each $R_{k,j}$ is contained in some R_j .

- (8) Let $\mathcal R$ be the collection of all closed cubes in $\mathbb R^n$. A closed cube is of the form $I \times \cdots \times I$ where I is a closed, bounded interval.
	- (a) Show that $(\mathcal{R}, |\cdot|)$ forms a gauge, and thus it determines a complete measure \mathcal{L}^n on \mathbb{R}^n called the *Lebesgue measure*.
	- (b) $\mathcal{L}^n(R) = |R|$ where R is a cube, closed or open.

(c) For any set E and $x \in \mathbb{R}^n$, $\mathcal{L}^n(E+x) = \mathcal{L}^n(E)$. Thus the Lebsegue measure is translational invariant.

Solution.

(a) We clearly have

$$
\inf_{R \in \mathcal{R}} |R| = 0 \quad \text{and} \quad \bigcup_{R \in \mathcal{R}} R = \mathbb{R}^n.
$$

Hence, R forms a gauge.

Define μ by

$$
\mu(A) = \inf \left\{ \sum_{j=1}^{\infty} |G_j| : G_j \in \mathcal{R} \right\}.
$$

We check that μ is an outer measure.

- Clearly, $\mu(\phi) = 0$.
- Suppose $\{E_j : j \in \mathcal{N}\}\$ are given and write $E = \bigcup_{j \in \mathbb{N}} E_j$. Let $\varepsilon > 0$. Choose $G_{jk} \in \mathcal{R}$ such that

$$
\mu(E_j) + 2^{-j}\varepsilon > \sum_{k \in \mathbb{N}} |G_{jk}|.
$$

Then $\{G_{jk} : j, k \in \mathbb{N}\}$ is a countable cover for E. We have

$$
\mu(E) \leq \sum_{j,k \in \mathbb{N}} |G_{jk}| < \sum_{j \in \mathbb{N}} \left(\mu(E_j) + 2^{-j} \varepsilon \right) = \sum_{j \in \mathbb{N}} \mu(E_j) + \varepsilon.
$$

Taking $\varepsilon \to 0$, we have

$$
\mu(E) \le \sum_{j \in \mathbb{N}} \mu(E_j).
$$

Following the Carathéodory's construction, we obtain a complete measure.

(b) By (9)(b), it suffices to show that $R \subseteq \bigcup_{i=1}^{\infty} R_i \Rightarrow |R| \leq \sum_{i=1}^{\infty} |R_i|$. We replace $R_j = [a_j, b_j] \times [c_j, d_j]$ by $\hat{R_j} = (a_j - \frac{\varepsilon}{2\delta})$ $\frac{\varepsilon}{2^j}, b_j + \frac{\varepsilon}{2^j}$ $(\frac{\varepsilon}{2^j}) \times (c_j - \frac{\varepsilon}{2})$ $\frac{\varepsilon}{2}, d_j + \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. Since $\{\hat{R}_j\}$ is an open cover of R and R is compact, there exists a finite subcover $\hat{R_{j_1}}, \cdots, \hat{R_{j_M}}$. By (9)(b)

$$
|R| \le \sum_{k=1}^M |\acute{R}_{j_k}| \le \sum_{j,k} |R_{j,k}| \le \sum_j |R_j| + C\varepsilon,
$$

C depends on n only. Let $\varepsilon \to 0$,

$$
|R| \le \sum_j |R_j|,
$$

which shows that

$$
|R| = \inf \{ \sum_{1}^{\infty} |R_j| : R \subseteq \bigcup_{j=1}^{\infty} R_j, R_j \text{ closed cube} \}.
$$

Therefore,

$$
\mathcal{L}^n(R) = |R|
$$

where R is a closed cube.

In order to show it also holds for any cube, it suffices to show $\mathcal{L}^n(F) = 0$ whenever F is a face of R. First, $\mathcal{L}^n(F) \leq \mathcal{L}^n(R) < \infty$. Let N be any number > 1 and $x_1 = (a_1, 0), \dots, x_N = (a_N, 0)$ be distinct point. Consider $F + x_j$. For small a_j , $F + x_j$ can be chosen to sit inside R, then $\bigcup (F+x_j) \subset R$. By (c), $N\mathcal{L}^n(F) = \sum \mathcal{L}^n(F+x_j) = L^n(\bigcup (F+x_j)) \leq$ $\mathcal{L}^n(R) \Rightarrow \mathcal{L}^n(F) \leq$ $\mathcal{L}^n(R)$ N $\rightarrow 0$ as $N \rightarrow \infty$.

(c) Result follows directly from definition.

(9) This problem is optional. Use Hahn-Kolmogorov theorem to construct the Lebesgue measure instead of Problems 7 and 8.

Solution. Refer to section 20.2 in Royden's book, Real Analysis.