Fall 2022

MATH5011 Suggested Solution to Exercise 2

(1) Let g be a measurable function in $[0, \infty]$. Show that

$$
m(E)=\int_E g\,d\mu
$$

defines a measure on M . Moreover,

$$
\int_X f \, dm = \int_X f g \, d\mu, \qquad \forall f \text{ measurable in } [0, \infty].
$$

Solution: We readily check that

- (1) $m(\phi) = 0;$
- (2) $m(E) \geq 0, \forall E \in M;$
- (3) For mutually disjoint $A_k \in M$,

$$
m\left(\bigcup_{k=1}^{\infty} A_k\right) = \int_X \sum_{k=1}^{\infty} \chi_{A_k} g \, d\mu = \sum_{k=1}^{\infty} \int \chi_{A_k} g \, d\mu = \sum_{k=1}^{\infty} m(A_k)
$$

by monotone convergence theorem, since $\sum_{n=1}^n$ $_{k=1}$ $\chi_{A_k} g \uparrow \sum^\infty$ $_{k=1}$ $\chi_{A_k}g$.

To prove the last assertion, consider the following cases:

(a) $f = \chi_E$ for some $E \in M$.

$$
\int_X f dm = \int_E dm = m(E) = \int_E g d\mu = \int_X \chi_E g d\mu = \int_X f g d\mu.
$$

(b) f is a non-negative simple function.

This follows from (a).

(c) f is a non-negative measurable function.

Pick a sequence $s_n \geq 0$ of simple functions such that $s_n \uparrow f$ pointwisely. Then $0 \leq s_n g \uparrow g$ pointwisely. From (b),

$$
\int_X s_n \, dm = \int_X s_n g \, d\mu.
$$

Taking $n \to \infty$, by monotone convergence theorem, we have

$$
\int_X f \, dm = \int_X f g \, d\mu.
$$

(2) Let $\{f_k\}$ be measurable in $[0, \infty]$ and $f_k \downarrow f$ a.e., f measurable and $\int f_1 d\mu$ ∞. Show that

$$
\lim_{k \to \infty} \int f_k \, d\mu = \int f \, d\mu.
$$

What happens if $\int f_1 d\mu = \infty$?

Solution: From the assumption we know the integrability of f_1 implies that all f_k are integrable. Without loss of generality, we may suppose $f_k \downarrow f$ pointwisely. (Otherwise, replace by X by $Y = X \setminus N$, such that $\mu(N) = 0$ and $f_k \downarrow f$ on Y.) Then $0 \leq f_1 - f_k \uparrow f_1 - f$. By monotone convergence theorem,

$$
\lim_{k \to \infty} \int_X (f_1 - f_k) d\mu = \int_X (f_1 - f) d\mu.
$$

 $Sine \big|$ \boldsymbol{X} $f_1 d\mu < \infty$, we can cancel it from both sides to yield the result. If $\int_X f_1 d\mu = \infty$, the result does not hold. For example, one may take $X = \mathbb{R}$, $f_k(x) = 1/k$ and $f = 0$. Then

$$
\int_X f d\mu = 0, \text{ while } \int_X f_k d\mu = \infty, \ \forall k \in N.
$$

(3) Let f be a measurable function. Show that there exists a sequence of simple functions $\{s_j\}, |s_1| \leq |s_2| \leq |s_3| \leq \cdots$, and $s_k(x) \to f(x)$, $\forall x \in X$.

Solution: Choose sequences of non-negative simple functions s_i^+ j^+ \uparrow f_+ and $s_i^ \bar{j}$ ↑ $f_-.$ Put $s_j = s_j^+ \chi_{\{x : f(x) \geq 0\}} - s_j^- \chi_{\{x : f(x) < 0\}}$. Fix $x \in X$. If $f(x) \geq 0$ then $|s_j(x)| = s_j^+$ $j^+(x)$ \uparrow f_+ . If $f(x) < 0$ then $|s_j(x)| = s_j^ \overline{j}(x) \uparrow f_-\$. We also have

$$
s_j(x) \to f_+ \chi_{\{x:f(x)\geq 0\}}(x) - f_- \chi_{\{x:f(x)< 0\}}(x) = f(x), \quad \forall x \in X.
$$

(4) Let $\mu(X) < \infty$ and f be integrable. Suppose that

$$
\frac{1}{\mu(E)} \int_{E} f d\mu \in [a, b], \ \forall E \in \mathcal{M}, \mu(E) > 0
$$

for some [a, b]. Show that $f(x) \in [a, b]$ a.e..

Solution: Let $A = \{x : f(x) < a\}$ and $B = \{x : f(x) > b\}$. If $\mu(A) > 0$, we will draw a contradiction. Let $A_n = \{x \in A : f(x) < a - 1/n\}$ so $A = \bigcup_n A_n$. As $\{A_n\}$ is an ascending family tending to A, we can find some n_0 such that $\mu(A_{n_0}) > 0$. Then

$$
\frac{1}{\mu(A_{n_0})} \int_{A_{n_0}} f d\mu \le a - \frac{1}{n_0} ,
$$

contradiction. Similarly we can treat the case $\mu(B) > 0$.

(5) Let f be Lebsegue integrable on $[a, b]$ which satisfies

$$
\int_{a}^{c} f d\mathcal{L}^{1} = 0,
$$

for every c. Show that f is equal to 0 a.e..

Solution: We can express our assumption as

$$
\int_a^c f_+ d\mathcal{L}^1 = \int_a^c f_- d\mathcal{L}^1, \qquad \forall c \in [a, b] .
$$

Clearly this implies these two integrals holds when (a, c) is replaced by any open interval. As every open set in $[a, b]$ can be written as a countable disjoint union of open intervals, these two integrals are equal over any open set. From Lebesgue integration theory we know that for every Lebesgue measurable E , there is an open set G containing E with the approximating measure. Thus we conclude

$$
\int_E f_+ d\mathcal{L}^1 = \int_E f_+ d\mathcal{L}^1,
$$

for all measurable E. Taking $E = \{x \in [a, b] : f(x) > 0, \text{ we see that }$ $\int_E f_+ d\mathcal{L}^1 = 0$, which implies $f \leq 0$ a.e.. By taking $E = \{x : f(x) < 0\}$, we see that $f\geq 0$ a.e. . Hence $f=0$ a.e. .

(6) Let $f \ge 0$ be integrable and $\int f d\mu = c \in (0,\infty)$. Prove that

$$
\lim_{n \to \infty} \int n \log \left(1 + \left(\frac{f}{n} \right)^{\alpha} \right) d\mu = \begin{cases} \infty, & \text{if } \alpha \in (0, 1) \\ c, & \text{if } \alpha = 1 \\ 0, & \text{if } 1 < \alpha < \infty. \end{cases}
$$

Solution: Let $g_n(x) = n \log \left(1 + \left(\frac{f(x)}{x} \right) \right)$ n \int^{α} . Since $\int f d\mu = c \in (0, \infty)$, we know that $\mu({x : f(x) = \infty}) = 0$ and $\mu({x : f(x) > 0}) > 0$. Observe that

$$
\lim_{n \to \infty} g_n(x) = \begin{cases} \infty, & \text{on } \{x : f(x) > 0\}, \text{ if } \alpha < 1, \\ f(x), & \text{a.e. } \mu, \text{ if } \alpha = 1, \\ 0, & \text{a.e. } \mu, \text{ if } \alpha > 1. \end{cases}
$$

Moreover, if $\alpha \geq 1$, using the elementary inequalities $1 + x^{\alpha} \leq (1 + x)^{\alpha}$ and $log(1 + x) \leq x$ for $x \geq 0$, we have

$$
g_n \le n \log \left(1 + \frac{f}{n}\right)^{\alpha} \le n\alpha \cdot \frac{f}{n} = \alpha f \in L^1(\mu).
$$

• Suppose $\alpha \in (0,1)$. By Fatou's lemma,

$$
\underline{\lim}_{n\to\infty}\int g_n\,d\mu\geq \int \underline{\lim}_{n\to\infty}g_n\,d\mu=\infty.
$$

Hence, $\lim_{n\to\infty}\int g_n d\mu = \infty$.

• Suppose $\alpha = 1$. By Lebesgue dominated convergence theorem,

$$
\lim_{n \to \infty} \int g_n d\mu = \int \lim_{n \to \infty} g_n d\mu = \int f d\mu = c.
$$

• Suppose $1 < \alpha < \infty$. By Lebesgue dominated convergence theorem,

$$
\lim_{n \to \infty} \int g_n d\mu = \int \lim_{n \to \infty} g_n d\mu = 0.
$$

(7) Let $\mu(X) < \infty$ and $f_k \to f$ uniformly on X and each f_k is bounded. Prove that

$$
\lim_{k \to \infty} \int f_k \, d\mu = \int f \, d\mu.
$$

Can $\mu(X) < \infty$ be removed?

Solution: We assume that $\mu(X) > 0$. (Otherwise, the result is trivial.) Let $\varepsilon > 0$ be given. Since $f_k \to f$ uniformly on X, there exists natural number N such that for all $k \geq N$ and for all $x \in X$, we have

$$
|f_k(x) - f(x)| < \frac{\varepsilon}{\mu(X)}.
$$

So, for all $k \geq N$, we have

$$
\left| \int f_k \, d\mu - \int f \, d\mu \right| \leq \int |f_k - f| \, d\mu < \varepsilon.
$$

The result follows.

If $\mu(X) = \infty$, the result no longer holds. One may take $X = R$, $f_k(x) = 1/k$,

 $f(x) = 0$ and μ to be the Lebesgue measure. Then $f_k \to f$ uniformly on X and each f_k is bounded,

$$
\int f d\mu = 0, \text{ while } \int f_k d\mu = \infty, \ \forall k.
$$

(8) Give another proof of Borel-Cantelli lemma Problem 7 in Ex 1 by integration theory. (Hint: Study $g(x) = \sum_{n=0}^{\infty}$ $j=1$ $\chi_{A_j}(x)$.)

Solution: Let $\{A_k\}$ be measurable, $A = \{x \in X : x \in A_k \text{ for infinitely many } k\}$ and suppose $\sum_{n=1}^{\infty}$ $k=1$ $\mu(A_k) < \infty$. Write

$$
g(x) = \sum_{j=1}^{\infty} \chi_{A_j}(x).
$$

Then $x \in A$ if and only if $g(x) = \infty$. By Fatou's lemma,

$$
\int g d\mu \le \sum_{j=1}^{\infty} \int \chi_{A_j} d\mu = \sum_{j=1}^{\infty} \mu(A_j) < \infty.
$$

As a consequence of Markov's inequality, g is finite a.e., the conclusion follows. This problem shows the power by expressing things in terms of measurable functions.

- (9) Let f be a Riemann integrable function on $[a, b]$ and extend it to R by setting it zero outside $[a, b]$.
	- (a) Show that f is Lebsegue measurable.
	- (b) Show that the Riemann integral of f is equal to $\int_{\mathbb{R}} f d\mathcal{L}^1$.
	- (c) Give an example of a sequence of Riemann integrable functions which is uniformly bounded on $[a, b]$ and converges pointwisely to some function which is not Riemann integrable.

Solution:

(a) We assume the result and notation in question 10 of exercise 1, by the proof of 10b), f is Riemann integrable on $[a, b]$ if and only if $\overline{R}(f) = \underline{R}(f)$. When this holds, $L = \overline{R}(f) = \underline{R}(f)$. Then for all natural number *n*, we may find partition of [a,b], $P_n = \{a = z_0 < z_1 < \ldots < z_{m_n} = b\}$ such that

$$
0 \leq \overline{R}(P_n, f) - \underline{R}(P_n, f) \leq \frac{1}{n},
$$

define two sequence of step function in the following way, for all x in $[z_j, z_{j+1}),$

$$
\varphi_n(x) = \inf \{ f(x) : x \in [z_j, z_{j+1}] \},
$$

and

$$
\psi_n(x) = \sup \{ f(x) : x \in [z_j, z_{j+1}] \}.
$$

For all x in $[a, b]$

$$
h(x) = \sup \{ \varphi_n(x) : n \in N \}
$$

and

$$
g(x) = \inf \{ \psi_n(x) : n \in N \},
$$

 h and g are obviously Lebesgue measurable, we also have $\varphi_n(x) \leq h \leq$ $f \le g \le \psi_n(x)$. For any natural number *n*,

$$
0 \leq \int_a^b (g-h)d\mathcal{L}^1 \leq \int_a^b (\psi_n - \varphi_n)d\mathcal{L}^1 = \overline{R}(P_n, f) - \underline{R}(P_n, f) \leq \frac{1}{n},
$$

so we have $h = f = g$ a.e. and f is Lebesgue measurable.

(b) By taking refinement with the partition $\{a = z_0 < z_1 = a + (b - a)/n \}$.. $\langle z_j = a + j(b - a)/n \langle z_m = b \rangle$ if necessary, we may assume the norm of partition P_n in (a) tend to 0 as $n \to 0$. As φ_n and ψ_n are integrable and $|f(x)| \leq |\varphi_n(x)| + |\psi_n(x)|$ for all x in $[a, b]$, f is Lebesgue

integrable and

$$
\underline{R}(P_n, f) = \int_a^b \varphi_n d\mathcal{L}^1 \le \int_a^b f d\mathcal{L}^1 \le \int_a^b \psi_n d\mathcal{L}^1 = \overline{R}(P_n, f) .
$$

Using result in 10(b) of Ex.1 and let n go to ∞ , we have Riemann integral = $\int_R f d\mathcal{L}^1$.

(c) We consider the famous Dirichlet function g which is not Riemann integrable, $g(x) = 1$ if x is rational and $\in [0, 1]$, $g(x) = 0$ otherwise. Let ${q_n : n \in N}$ be an enumeration of all rational number in [0, 1] and define

$$
f_n = \sum_{i=1}^n \chi_{q_i} .
$$

Then each f_n is obviously uniformly bounded Riemann integrable with zero integral and yet $\{f_n\}$ converges pointwisely to the Dirichlet function for all x in [0, 1].

(10) Let f be integrable in (X, \mathcal{M}, μ) . Show that for each $\varepsilon > 0$, there is some δ such that

$$
\int_E |f| < \varepsilon, \quad \text{ whenever } E \in \mathcal{M}, \ \mu(E) < \delta \ .
$$

This is called the absolute continuity of an integrable function.

Solution. Assume on the contrary there is some $\varepsilon_0 > 0$ and E_j , $\mu(E_n) \leq 2^{-n}$, such that $\int_{E_n} |f| d\mu \geq \varepsilon_0$. Let $A_n = \bigcup_{j \geq n} E_j$. Then

$$
\mu(A_n) \le \sum_{j \ge n} \mu(E_j) \le \sum_{j \ge n} \frac{1}{2^j} = \frac{1}{2^{n-1}}.
$$

Let $A = \bigcap_n A_n$. As $\{A_n\}$ is descending and $\mu(A_1)$ is finite,

$$
\mu(A) = \lim_{n \to \infty} \mu(A_n) = 0 ,
$$

that is, A is of measure zero. On the other hand, we have $|f|\chi_{A_n} \leq |f|$, by

the dominated convergence theorem we have

$$
\int_A |f| d\mu = \lim_{n \to \infty} \int_{A_n} |f| d\mu \ge \varepsilon_0 > 0,
$$

contradiction holds.