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MATH5011 Suggested Solution to
Exercise 2

(1) Let g be a measurable function in [0,∞]. Show that

m(E) =

∫
E

g dµ

defines a measure on M. Moreover,

∫
X

f dm =

∫
X

fg dµ, ∀f measurable in [0,∞].

Solution: We readily check that

(1) m(φ) = 0;

(2) m(E) ≥ 0, ∀E ∈M ;

(3) For mutually disjoint Ak ∈M ,

m

(
∞⋃
k=1

Ak

)
=

∫
X

∞∑
k=1

χAk
g dµ =

∞∑
k=1

∫
χAk

g dµ =
∞∑
k=1

m(Ak)

by monotone convergence theorem, since
n∑
k=1

χAk
g ↑

∞∑
k=1

χAk
g.

To prove the last assertion, consider the following cases:

(a) f = χE for some E ∈M .

∫
X

f dm =

∫
E

dm = m(E) =

∫
E

g dµ =

∫
X

χEg dµ =

∫
X

fg dµ.
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(b) f is a non-negative simple function.

This follows from (a).

(c) f is a non-negative measurable function.

Pick a sequence sn ≥ 0 of simple functions such that sn ↑ f pointwisely.

Then 0 ≤ sng ↑ g pointwisely. From (b),

∫
X

sn dm =

∫
X

sng dµ.

Taking n→∞, by monotone convergence theorem, we have

∫
X

f dm =

∫
X

fg dµ.

(2) Let {fk} be measurable in [0,∞] and fk ↓ f a.e., f measurable and

∫
f1 dµ <

∞. Show that

lim
k→∞

∫
fk dµ =

∫
f dµ.

What happens if

∫
f1 dµ =∞?

Solution: From the assumption we know the integrability of f1 implies that

all fk are integrable. Without loss of generality, we may suppose fk ↓ f

pointwisely. (Otherwise, replace by X by Y = X \ N , such that µ(N) = 0

and fk ↓ f on Y .) Then 0 ≤ f1 − fk ↑ f1 − f . By monotone convergence

theorem,

lim
k→∞

∫
X

(f1 − fk) dµ =

∫
X

(f1 − f) dµ.

Since

∫
X

f1 dµ <∞, we can cancel it from both sides to yield the result.

If
∫
X
f1 dµ =∞, the result does not hold. For example, one may take X = R,

fk(x) = 1/k and f = 0. Then

∫
X

f dµ = 0, while

∫
X

fk dµ =∞, ∀k ∈ N.
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(3) Let f be a measurable function. Show that there exists a sequence of simple

functions {sj}, |s1| ≤ |s2| ≤ |s3| ≤ · · · , and sk(x)→ f(x), ∀x ∈ X.

Solution: Choose sequences of non-negative simple functions s+j ↑ f+ and

s−j ↑ f−. Put sj = s+j χ{x:f(x)≥0} − s−j χ{x:f(x)<0}. Fix x ∈ X. If f(x) ≥ 0 then

|sj(x)| = s+j (x) ↑ f+. If f(x) < 0 then |sj(x)| = s−j (x) ↑ f−. We also have

sj(x)→ f+χ{x:f(x)≥0}(x)− f−χ{x:f(x)<0}(x) = f(x), ∀x ∈ X.

(4) Let µ(X) <∞ and f be integrable. Suppose that

1

µ(E)

∫
E

f dµ ∈ [a, b], ∀E ∈M, µ(E) > 0

for some [a, b]. Show that f(x) ∈ [a, b] a.e..

Solution: Let A = {x : f(x) < a} and B = {x : f(x) > b}. If µ(A) > 0, we

will draw a contradiction. Let An = {x ∈ A : f(x) < a−1/n} so A =
⋃
nAn.

As {An} is an ascending family tending to A, we can find some n0 such that

µ(An0) > 0. Then
1

µ(An0)

∫
An0

fdµ ≤ a− 1

n0

,

contradiction. Similarly we can treat the case µ(B) > 0.

(5) Let f be Lebsegue integrable on [a, b] which satisfies

∫ c

a

fdL1 = 0,

for every c. Show that f is equal to 0 a.e..

Solution: We can express our assumption as

∫ c

a

f+dL1 =

∫ c

a

f−dL1, ∀c ∈ [a, b] .
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Clearly this implies these two integrals holds when (a, c) is replaced by any

open interval. As every open set in [a, b] can be written as a countable disjoint

union of open intervals, these two integrals are equal over any open set. From

Lebesgue integration theory we know that for every Lebesgue measurable E,

there is an open set G containing E with the approximating measure. Thus

we conclude ∫
E

f+dL1 =

∫
E

f+dL1,

for all measurable E. Taking E = {x ∈ [a, b] : f(x) > 0, we see that∫
E
f+dL1 = 0, which implies f ≤ 0 a.e.. By taking E = {x : f(x) < 0}, we

see that f ≥ 0 a.e. . Hence f = 0 a.e. .

(6) Let f ≥ 0 be integrable and

∫
f dµ = c ∈ (0,∞). Prove that

lim
n→∞

∫
n log

(
1 +

(
f

n

)α)
dµ =


∞, if α ∈ (0, 1)

c, if α = 1

0, if 1 < α <∞.

Solution: Let gn(x) = n log

(
1 +

(
f(x)

n

)α)
. Since

∫
f dµ = c ∈ (0,∞),

we know that µ({x : f(x) = ∞}) = 0 and µ({x : f(x) > 0}) > 0. Observe

that

lim
n→∞

gn(x) =


∞, on {x : f(x) > 0}, if α < 1,

f(x), a.e. µ, if α = 1,

0, a.e. µ, if α > 1.

Moreover, if α ≥ 1, using the elementary inequalities 1 + xα ≤ (1 + x)α and

log(1 + x) ≤ x for x ≥ 0, we have

gn ≤ n log

(
1 +

f

n

)α
≤ nα · f

n
= αf ∈ L1(µ).
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• Suppose α ∈ (0, 1). By Fatou’s lemma,

lim
n→∞

∫
gn dµ ≥

∫
lim
n→∞

gn dµ =∞.

Hence, lim
n→∞

∫
gn dµ =∞.

• Suppose α = 1. By Lebesgue dominated convergence theorem,

lim
n→∞

∫
gn dµ =

∫
lim
n→∞

gn dµ =

∫
f dµ = c.

• Suppose 1 < α <∞. By Lebesgue dominated convergence theorem,

lim
n→∞

∫
gn dµ =

∫
lim
n→∞

gn dµ = 0.

(7) Let µ(X) < ∞ and fk → f uniformly on X and each fk is bounded. Prove

that

lim
k→∞

∫
fk dµ =

∫
f dµ.

Can µ(X) <∞ be removed?

Solution: We assume that µ(X) > 0. (Otherwise, the result is trivial.) Let

ε > 0 be given. Since fk → f uniformly on X, there exists natural number

N such that for all k ≥ N and for all x ∈ X, we have

|fk(x)− f(x)| < ε

µ(X)
.

So, for all k ≥ N , we have∣∣∣∣∫ fk dµ−
∫
f dµ

∣∣∣∣ ≤ ∫ |fk − f | dµ < ε.

The result follows.

If µ(X) =∞, the result no longer holds. One may take X = R, fk(x) = 1/k,
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f(x) = 0 and µ to be the Lebesgue measure. Then fk → f uniformly on X

and each fk is bounded,

∫
f dµ = 0, while

∫
fk dµ =∞, ∀k.

(8) Give another proof of Borel-Cantelli lemma Problem 7 in Ex 1 by integration

theory. (Hint: Study g(x) =
∞∑
j=1

χAj
(x).)

Solution: Let {Ak} be measurable, A = {x ∈ X : x ∈ Ak for infinitely many k}

and suppose
∞∑
k=1

µ(Ak) <∞. Write

g(x) =
∞∑
j=1

χAj
(x).

Then x ∈ A if and only if g(x) =∞. By Fatou’s lemma,

∫
g dµ ≤

∞∑
j=1

∫
χAj

dµ =
∞∑
j=1

µ(Aj) <∞.

As a consequence of Markov’s inequality, g is finite a.e., the conclusion follows.

This problem shows the power by expressing things in terms of measurable

functions.

(9) Let f be a Riemann integrable function on [a, b] and extend it to R by setting

it zero outside [a, b].

(a) Show that f is Lebsegue measurable.

(b) Show that the Riemann integral of f is equal to
∫
R fdL

1.

(c) Give an example of a sequence of Riemann integrable functions which is

uniformly bounded on [a, b] and converges pointwisely to some function

which is not Riemann integrable.
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Solution:

(a) We assume the result and notation in question 10 of exercise 1, by the

proof of 10b), f is Riemann integrable on [a, b] if and only if R(f) = R(f).

When this holds, L = R(f) = R(f). Then for all natural number n, we

may find partition of [a,b], Pn = {a = z0 < z1 < ... < zmn = b} such

that

0 ≤ R(Pn, f)−R(Pn, f) ≤ 1

n
,

define two sequence of step function in the following way, for all x in

[zj, zj+1),

ϕn(x) = inf
{
f(x) : x ∈ [zj, zj+1]

}
,

and

ψn(x) = sup
{
f(x) : x ∈ [zj, zj+1]

}
.

For all x in [a, b]

h(x) = sup
{
ϕn(x) : n ∈ N

}
and

g(x) = inf
{
ψn(x) : n ∈ N

}
,

h and g are obviously Lebesgue measurable, we also have ϕn(x) ≤ h ≤

f ≤ g ≤ ψn(x). For any natural number n,

0 ≤
∫ b

a

(g − h)dL1 ≤
∫ b

a

(ψn − ϕn)dL1 = R(Pn, f)−R(Pn, f) ≤ 1

n
,

so we have h = f = g a.e. and f is Lebesgue measurable.

(b) By taking refinement with the partition {a = z0 < z1 = a+ (b− a)/n <

.. < zj = a + j(b − a)/n < .. < zmn = b} if necessary, we may assume

the norm of partition Pn in (a) tend to 0 as n → 0. As ϕn and ψn are

integrable and |f(x)| ≤ |ϕn(x)|+ |ψn(x)| for all x in [a, b], f is Lebesgue
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integrable and

R(Pn, f) =

∫ b

a

ϕndL1 ≤
∫ b

a

fdL1 ≤
∫ b

a

ψndL1 = R(Pn, f) .

Using result in 10(b) of Ex.1 and let n go to ∞, we have Riemann

integral =
∫
R
fdL1.

(c) We consider the famous Dirichlet function g which is not Riemann in-

tegrable, g(x) =1 if x is rational and ∈ [0, 1] , g(x) =0 otherwise. Let

{qn : n ∈ N} be an enumeration of all rational number in [0, 1] and

define

fn =
n∑
i=1

χqi .

Then each fn is obviously uniformly bounded Riemann integrable with

zero integral and yet {fn} converges pointwisely to the Dirichlet function

for all x in [0, 1].

(10) Let f be integrable in (X,M, µ). Show that for each ε > 0, there is some δ

such that ∫
E

|f | < ε, whenever E ∈M, µ(E) < δ .

This is called the absolute continuity of an integrable function.

Solution. Assume on the contrary there is some ε0 > 0 and Ej, µ(En) ≤ 2−n,

such that
∫
En
|f |dµ ≥ ε0. Let An =

⋃
j≥nEj. Then

µ(An) ≤
∑
j≥n

µ(Ej) ≤
∑
j≥n

1

2j
=

1

2n−1
.

Let A = ∩nAn. As {An} is descending and µ(A1) is finite,

µ(A) = lim
n→∞

µ(An) = 0 ,

that is, A is of measure zero. On the other hand, we have |f |χAn ≤ |f |, by
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the dominated convergence theorem we have

∫
A

|f |dµ = lim
n→∞

∫
An

|f |dµ ≥ ε0 > 0 ,

contradiction holds.
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