Fall 2022 MATH5011 Real Analysis I

Exercise 1 Suggested Solution

(1) Let $\{A_k\}_{k=1}^{\infty}$ be a sequence of measurable sets in (X, \mathcal{M}) . Let

 $A = \{x \in X : x \in A_k \text{ for infinitely many } k\}$,

and

 $B = \{x \in X : x \in A_k \text{ for all except finitely many } k\} .$

Show that A and B are measurable.

Solution

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k.$$
$$B = \bigcup_{n=1}^{\infty} \bigcap_{k > n} A_k.$$

(2) Let $\Psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous. Show that $\Psi(f, g)$ are measurable for any measurable functions f, g. This result contains Proposition 1.3 as a special case.

Solution Note that every open set $G \subseteq \mathbb{R}^2$ can be written as a countable union of set of the form $V_1 \times V_2$ where V_1, V_2 open in \mathbb{R} . (Think of $V_1 \times V_2 = (a, b) \times (c, d), a, b, c, d \in Q$).

Let $G \subseteq \mathbb{R}$ be open. Then $\Phi^{-1}(G)$ is open in \mathbb{R}^2 , so

$$\Phi^{-1}(G) = \bigcup_n (V_n^1 \times V_n^2),$$

Then

$$h^{-1}(\Phi^{-1})(G) = \bigcup_n h^{-1}(V_n^1 \times V_n^2) = \bigcup_n f^{-1}(V_n^1) \cap g^{-1}(V_n^2)$$

is measurable since f and g are measurable. Hence h = (f, g).

(3) Show that $f: X \to \overline{\mathbb{R}}$ is measurable if and only if $f^{-1}([a, b])$ is measurable for all $a, b \in \overline{\mathbb{R}}$.

Solution By def $f : X \to \overline{R}$ is measurable if $f^{-1}(G)$ is measurable. $\forall G$ open in \overline{R} . Every open set G in \overline{R} can be written as a countable union of (a, b), $[-\infty, a), (b, \infty], a, b \in R$. So ff is measurable iff $f^{-1}(a, b), f^{-1}[-\infty, a), f^{-1}(b, \infty]$ are measurable.

 \Rightarrow) Use

$$f^{-1}(a,b) = \bigcap_{n} f^{-1} \left(a - \frac{1}{n}, b + \frac{1}{n} \right)$$
$$f^{-1}[-\infty, a] = \bigcap_{n} f^{-1} \left[-\infty, a + \frac{1}{n} \right)$$
$$f^{-1}(b,\infty] = \bigcap_{n} f^{-1} \left(b - \frac{1}{n}, \infty \right]$$

⇐) Use

$$f^{-1}(a,b) = \bigcup_{n} f^{-1} \left[a - \frac{1}{n}, b + \frac{1}{n} \right]$$
$$f^{-1}[-\infty, a] = \bigcap_{n} f^{-1} \left[-\infty, a - \frac{1}{n} \right]$$
$$f^{-1}(b,\infty] = \bigcap_{n} f^{-1} \left[b + \frac{1}{n}, \infty \right].$$

(4) Let $f : X \times [a, b] \to \mathbb{R}$ satisfy (a) for each $x, y \mapsto f(x, y)$ is Riemann integrable, and (b) for each $y, x \mapsto f(x, y)$ is measurable with respect to some

 σ -algebra \mathcal{M} on X. Show that the function

$$F(x) = \int_{a}^{b} f(x, y) dy$$

is measurable with respect to \mathcal{M} .

Solution For simplicity let [a, b] = [0, 1]. For $n \ge 1$, equally divide [0, 1] into subintervals of length 1/n and let

$$F_n(x) = \sum_{k=1}^n f\left(x, \frac{k}{n}\right) \frac{1}{n} \, .$$

Clearly F_n is measurable (with respect to \mathcal{M}). Now

$$F(x) = \lim_{n \to \infty} F_n(x) ,$$

so it is also measurable.

- (5) Let $f, g, f_k, k \ge 1$, be measurable functions from X to $\overline{\mathbb{R}}$.
- (a) Show that $\{x : f(x) < g(x)\}\$ and $\{x : f(x) = g(x)\}\$ are measurable sets.
- (b) Show that $\{x : \lim_{k \to \infty} f_k(x) \text{ exists and is finite}\}$ is measurable.

Solution

(a) Suffice to show $\{x : F(x) > 0\}$ and $\{x : F(x) = 0\}$ are measurable. If F is measurable, use

$$\{x: F(x) > 0\} = F^{-1}(0, \infty]$$
$$\{x: F(x) = 0\} = F^{-1}[0, \infty] \cap F^{-1}[-\infty, 0]$$

4

Alternatively, one may consider

$$\{x \in X : f(x) < g(x)\} = \bigcup_{r \in \mathbb{Q}} \left(f^{-1}[-\infty, r) \cap g^{-1}(r, \infty] \right)$$

$$\{x \in X : f(x) = g(x)\} = \{x \in X : f(x) < g(x)\}^c \cap \{x \in X : f(x) > g(x)\}^c$$

(b) Since
$$g(x) = \limsup_{k \to \infty} f_k(x)$$
 and $\liminf_{k \to \infty} f_k(x)$ are measurable.

$$\{x: \lim_{k \to \infty} f_k(x) \text{ exists }\} = \{x: \liminf_{k \to \infty} f_k(x) = \limsup_{k \to \infty} f_k(x)\}$$

On the other hand, the set $\{x : g(x) < +\infty\}$ is also measurable, so is their intersection.

(6) There are two conditions (i) and (ii) in the definition of a measure μ on (X, \mathcal{M}) . Show that (i) can be replaced by the "nontriviality condition": There exists some $E \in \mathcal{M}$ with $\mu(E) < \infty$.

Solution If μ is a measure satisfying the nontriviality condition and (ii), let $A_1 = E, A_i = \phi$ for $i \ge 2$ in ii),

$$\infty > \mu(E) = \sum_{i=1}^{\infty} \mu(A_i) \ge \mu(A_1) + \mu(A_2) = \mu(E) + \mu(\phi)$$

so $0 \ge \mu(\phi) \ge 0$. We have μ is a measure satisfying (i) and (ii).

If μ is a measure satisfying (i) and (ii), taking $E = \phi$, we have the nontriviality condition.

(7) Let $\{A_k\}$ be measurable and $\sum_{k=1}^{\infty} \mu(A_k) < \infty$ and

$$A = \{ x \in X : x \in A_k \text{ for infinitely many } k \}.$$

We know that A is measurable from (1). Show that $\mu(A) = 0$. **Solution** Since $\sum_{k=1}^{\infty} \mu(A_k) < \infty$, we have $\sum_{k=n}^{\infty} \mu(A_k) \to 0$ as $n \to \infty$. For any

and

 $n \in N$, we have

$$A\subset \bigcup_{k\geq n}A_k$$

and so

$$\mu(A) \le \sum_{k=n}^{\infty} \mu(A_k) \; .$$

Taking $n \to \infty$, we have $\mu(A) = 0$.

This result is called Borel-Cantelli lemma.

(8) Let B be the set defined in (1). Let μ be a measure on (X, \mathcal{M}) . Show that

$$\mu(B) \le \liminf_{k \to \infty} \mu(A_k) \ .$$

Solution Using the characterization

$$B = \bigcup_{k=1}^{\infty} \bigcap_{j \ge k} A_j \; ,$$

and the fact that $\{\bigcap_{j\geq k}A_j\}$ is ascending in k, we have

$$\mu(B) = \lim_{k \to \infty} \mu\left(\bigcap_{j \ge k} A_j\right)$$
$$= \liminf_{k \to \infty} \mu\left(\bigcap_{j \ge k} A_j\right)$$
$$\leq \liminf_{k \to \infty} \mu(A_k) .$$

(9) Here we review Riemann integral. Let f be a bounded function defined on $[a, b], a, b \in \mathbb{R}$. Given any partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ on [a, b] and tags $z_j \in [x_j, x_{j+1}]$, there corresponds a *Riemann sum* of f given by $R(f, P, \mathbf{z}) = \sum_{j=0}^{n-1} f(z_j)(x_{j+1} - x_j)$. The function f is called *Riemann integrable* with integral L if for every $\varepsilon > 0$ there exists some δ such that

$$\left|R(f, P, \mathbf{z}) - L\right| < \varepsilon,$$

whenever $||P|| < \delta$ and **z** is any tag on *P*. (Here $||P|| = \max_{j=0}^{n-1} |x_{j+1} - x_j|$ is the length of the partition.) Show that

1. For any partition P, define its *Darboux upper* and *lower sums* by

$$\overline{R}(f, P) = \sum_{j} \sup \{ f(x) : x \in [x_j, x_{j+1}] \} (x_{j+1} - x_j),$$

and

$$\underline{R}(f, P) = \sum_{j} \inf \{ f(x) : x \in [x_j, x_{j+1}] \} (x_{j+1} - x_j)$$

respectively. Show that for any sequence of partitions $\{P_n\}$ satisfying $||P_n|| \to 0$ as $n \to \infty$, $\lim_{n\to\infty} \overline{R}(f, P_n)$ and $\lim_{n\to\infty} \underline{R}(f, P_n)$ exist.

2. $\{P_n\}$ as above. Show that f is Riemann integrable if and only if

$$\lim_{n \to \infty} \overline{R}(f, P_n) = \lim_{n \to \infty} \underline{R}(f, P_n) = L.$$

3. A set E in [a, b] is called of measure zero if for every $\varepsilon > 0$, there exists a countable subintervals J_n satisfying $\sum_n |J_n| < \varepsilon$ such that $E \subset \bigcup_n J_n$. Prove Lebsegue's theorem which asserts that f is Riemann integrable if and only if the set consisting of all discontinuity points of f is a set of measure zero. Google for help if necessary.

Solution:

(a) It suffices to show: For every $\varepsilon > 0$, there exists some δ such that

$$0 \le \overline{R}(f, P) - \overline{R}(f) < \varepsilon,$$

and

$$0 \le \underline{R}(f) - \underline{R}(f, P) < \varepsilon,$$

for any partition P, $||P|| < \delta$, where

$$\overline{R}(f) = \inf_{P} \overline{R}(f, P),$$

and

$$\underline{R}(f) = \sup_{P} \underline{R}(f, P).$$

If it is true, then $\lim_{n\to\infty} \overline{R}(f, P_n)$ and $\lim_{n\to\infty} \underline{R}(f, P_n)$ exist and equal to $\overline{R}(f)$ and $\underline{R}(f)$ respectively.

Given $\varepsilon > 0$, there exists a partition Q such that

$$\overline{R}(f) + \varepsilon/2 > \overline{R}(f, Q).$$

Let m be the number of partition points of Q (excluding the endpoints). Consider any partition P and let R be the partition by putting together P and Q. Note that the number of subintervals in P which contain some partition points of Q in its interior must be less than or equal to m. Denote the indices of the collection of these subintervals in P by J. We have

$$0 \le \overline{R}(f, P) - \overline{R}(f, R) \le \sum_{j \in J} 2M\Delta x_j \le 2M \times m||P||,$$

where $M = \sup_{[a,b]} |f|$, because the contributions of $\overline{R}(f, P)$ and $\overline{R}(f, Q)$ from the subintervals not in J cancel out. Hence, by the fact that R is a refinement of Q,

$$\overline{R}(f) + \varepsilon/2 > \overline{R}(f, Q) \ge \overline{R}(f, R) \ge \overline{R}(f, P) - 2Mm||P||,$$

i.e.,

$$0 \leq \overline{R}(f,P) - \overline{R}(f) < \varepsilon/2 + 2Mm||P||.$$

Now, we choose

$$\delta < \frac{\varepsilon}{1+4Mm},$$

Then for P, $||P|| < \delta$,

$$0 \le \overline{R}(f, P) - \overline{R}(f) < \varepsilon.$$

Similarly, one can prove the second inequality.

According to the definition of integrability, when f is integrable, there exists some $L \in \mathbb{R}$ so that for any given $\varepsilon > 0$, there is a $\delta > 0$ such that for all partitions P with $||P|| < \delta$,

$$|R(f, P, z) - L| < \varepsilon/2,$$

holds for any tags z. Let (P_1, z_1) be another tagged partition. By the triangle inequality we have

$$|R(f, P, z) - R(f, P_1, z_1)| \le |R(f, P, z) - L| + |R(f, P_1, z_1) - L| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Since the tags are arbitrary, it implies

$$\overline{R}(f,P) - \underline{R}(f,P) \le \varepsilon.$$

As a result,

$$0 \le \overline{R}(f) - \underline{R}(f) \le \overline{R}(f, P) - \underline{R}(f, P) \le \varepsilon.$$

Note that the first inequality comes from the definition of the upper/lower Riemann integrals. Since $\varepsilon > 0$ is arbitrary, $\overline{R}(f) = \underline{R}(f)$.

Conversely, using $\overline{R}(f) = \underline{R}(f)$ in part a, we know that for $\varepsilon > 0$, there exists a δ such that

$$0 \le R(f, P) - \underline{R}(f, P) < \varepsilon,$$

for all partitions P, $||P|| < \delta$. We have

$$\begin{split} R(f,P,z) &- \underline{R}(f) &\leq \overline{R}(f,P) - \underline{R}(f) \\ &\leq \overline{R}(f,P) - \underline{R}(f,P) \\ &< \varepsilon, \end{split}$$

and similarly,

$$\overline{R}(f) - R(f, P, z) \le \overline{R}(f, P) - \underline{R}(f, P) < \varepsilon.$$

As $\overline{R}(f) = \underline{R}(f)$, combining these two inequalities yields

$$|R(f, P, z) - \underline{R}(f)| < \varepsilon,$$

for all P, $||P|| < \delta$, so f is integrable, where $L = \underline{R}(f)$.

(c) For any bounded f on [a, b] and $x \in [a, b]$, its oscillation at x is defined by

$$\begin{split} \omega(f,x) &= \inf_{\delta} \{ (\sup f(y) - \inf f(y)) : y \in (x - \delta, x + \delta) \cap [a,b] \} \\ &= \lim_{\delta \to 0^+} \{ (\sup f(y) - \inf f(y)) : y \in (x - \delta, x + \delta) \cap [a,b] \}. \end{split}$$

It is clear that $\omega(f, x) = 0$ if and only if f is continuous at x. The set of discontinuity of f, D, can be written as $D = \bigcup_{k=1}^{\infty} O(k)$, where O(k) = $\{x \in [a, b] : \omega(f, x) \ge 1/k\}$. Suppose that f is Riemann integrable on [a, b]. It suffices to show that each O(k) is of measure zero. Given $\varepsilon > 0$, by Integrability of f, we can find a partition P such that

$$\overline{R}(f,P) - \underline{R}(f,P) < \varepsilon/2k.$$

Let J be the index set of those subintervals of P which contains some elements of O(k) in their interiors. Then

$$\frac{1}{k} \sum_{j \in J} |I_j| \leq \sum_{j \in J} (\sup_{I_j} f - \inf_{I_j} f) \Delta x_j$$
$$\leq \sum_{j=1}^n (\sup_{I_j} f - \inf_{I_j} f) \Delta x_j$$
$$= \overline{R}(f, P) - \underline{R}(f, P)$$
$$< \varepsilon/2k.$$

Therefore

$$\sum_{j\in J} |I_j| < \varepsilon/2.$$

Now, the only possibility that an element of O(k) is not contained by one of these I_j is it being a partition point. Since there are finitely many partition points, say N, we can find some open intervals $I'_1, ..., I'_N$ containing these partition points which satisfy

$$\sum |I_i'| < \varepsilon/2.$$

So $\{I_j\}$ and $\{I'_i\}$ together form a covering of O(k) and its total length is strictly less than ε . We conclude that O(k) is of measure zero.

Conversely, given $\varepsilon > 0$, fix a large k such that $\frac{1}{k} < \varepsilon$. Now the set O(k) is

of measure zero, we can find a sequence of open intervals $\{I_j\}$ satisfying

$$O(k) \subseteq \bigcup_{j=1}^{\infty} I_j,$$
$$\sum_{j=1}^{\infty} |I_{i_j}| < \varepsilon.$$

One can show that O(k) is closed and bounded, hence it is compact. As a result, we can find $I_{i_1}, ..., I_{i_N}$ from $\{I_j\}$ so that

$$O(k) \subseteq I_{i_1} \cup \ldots \cup I_{i_N},$$
$$\sum_{j=1}^N |I_j| < \varepsilon.$$

Without loss of generality we may assume that these open intervals are mutually disjoint since, whenever two intervals have nonempty intersection, we can put them together to form a larger open interval. Observe that $[a,b] \setminus (I_{i_1} \cup \cdots \cup I_{i_N})$ is a finite disjoint union of closed bounded intervals, call them V'_is , $i \in A$. We will show that for each $i \in A$, one can find a partition on each $V_i = [v_{i-1}, v_i]$ such that the oscillation of f on each subinterval in this partition is less than 1/k.

Fix $i \in A$. For each $x \in V_i$, we have

$$\omega(f,x) < \frac{1}{k}.$$

By the definition of $\omega(f, x)$, one can find some $\delta_x > 0$ such that

$$\sup\{f(y): y \in B(x, \delta_x) \cap [a, b]\} - \inf\{f(z): z \in B(x, \delta_x) \cap [a, b]\} < \frac{1}{k}$$

where $B(y,\beta) = (y - \beta, y + \beta)$. Note that $V_i \subseteq \bigcup_{x \in V_i} B(x, \delta_x)$. Since V_i is closed and bounded, it is compact. Hence, there exist $x_{l_1}, \ldots, x_{l_M} \in V_i$ such

that $V_i \subseteq \bigcup_{j=1}^M B(x_{i_j}, \delta_{x_{l_j}})$. By replacing the left end point of $B(x_{i_j}, \delta_{x_{l_j}})$ with v_{i-1} if $x_{l_j} - \delta_{x_{l_j}} < v_{i-1}$, and replacing the right end point of $B(x_{i_j}, \delta_{x_{l_j}})$ with v_i if $x_{l_j} + \delta_{x_{l_j}} > v_i$, one can list out the endpoints of $\{B(x_{l_j}, \delta_{l_j})\}_{j=1}^M$ and use them to form a partition S_i of V_i . It can be easily seen that each subinterval in S_i is covered by some $B(x_{l_j}, \delta_{x_{l_j}})$, which implies that the oscillation of f in each subinterval is less than 1/k. So, S_i is the partition that we want.

The partitions S_i 's and the endpoints of $I_{i_1}, ..., I_{i_N}$ form a partition P of [a, b]. We have

$$\overline{R}(f,P) - \underline{R}(f,P) = \sum_{I_{i_j}} (M_j - m_j) \Delta x_j + \sum (M_j - m_j) \Delta x_j$$
$$\leq 2M \sum_{j=1}^N |I_{i_j}| + \frac{1}{k} \sum \Delta x_j$$
$$\leq 2M\varepsilon + \varepsilon(b-a)$$
$$= [2M + (b-a)]\varepsilon,$$

where $M = \sup_{[a,b]} |f|$ and the second summation is over all subintervals in $V_i, i \in A$. Hence f is integrable on [a, b].