
Fall 2022

MATH5011 Real Analysis I

Exercise 1 Suggested Solution

(1) Let {Ak}∞k=1 be a sequence of measurable sets in (X,M). Let

A = {x ∈ X : x ∈ Ak for infinitely many k} ,

and

B = {x ∈ X : x ∈ Ak for all except finitely many k} .

Show that A and B are measurable.

Solution

A =
∞⋂
n=1

⋃
k≥n

Ak.

B =
∞⋃
n=1

⋂
k≥n

Ak.

(2) Let Ψ : R × R → R be continuous. Show that Ψ(f, g) are measurable for

any measurable functions f , g. This result contains Proposition 1.3 as a special

case.

Solution Note that every open set G ⊆ R2 can be written as a countable union

of set of the form V1 × V2 where V1, V2 open in R. (Think of V1 × V2 = (a, b) ×

(c, d), a, b, c, d ∈ Q).

Let G ⊆ R be open. Then Φ−1(G) is open in R2, so

Φ−1(G) =
⋃
n

(V 1
n × V 2

n ),
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Then

h−1(Φ−1)(G) =
⋃
n

h−1(V 1
n × V 2

n ) =
⋃
n

f−1(V 1
n ) ∩ g−1(V 2

n )

is measurable since f and g are measurable. Hence h = (f, g).

(3) Show that f : X → R is measurable if and only if f−1([a, b]) is measurable

for all a, b ∈ R.

Solution By def f : X → R is measurable if f−1(G) is measurable. ∀G open

in R. Every open set G in R can be written as a countable union of (a, b),

[−∞, a), (b,∞], a, b ∈ R. So ff is measurable iff f−1(a, b), f−1[−∞, a), f−1(b,∞]

are measurable.

⇒) Use

f−1(a, b) =
⋂
n

f−1
(
a− 1

n
, b+

1

n

)

f−1[−∞, a) =
⋂
n

f−1
[
−∞, a+

1

n

)

f−1(b,∞] =
⋂
n

f−1
(
b− 1

n
,∞
]

⇐) Use

f−1(a, b) =
⋃
n

f−1
[
a− 1

n
, b+

1

n

]

f−1[−∞, a) =
⋂
n

f−1
[
−∞, a− 1

n

]

f−1(b,∞] =
⋂
n

f−1
[
b+

1

n
,∞
]
.

(4) Let f : X × [a, b] → R satisfy (a) for each x, y 7→ f(x, y) is Riemann

integrable, and (b) for each y, x 7→ f(x, y) is measurable with respect to some
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σ-algebra M on X. Show that the function

F (x) =

∫ b

a

f(x, y)dy

is measurable with respect to M.

Solution For simplicity let [a, b] = [0, 1]. For n ≥ 1, equally divide [0, 1] into

subintervals of length 1/n and let

Fn(x) =
n∑
k=1

f

(
x,
k

n

)
1

n
.

Clearly Fn is measurable (with respect to M). Now

F (x) = lim
n→∞

Fn(x) ,

so it is also measurable.

(5) Let f , g, fk, k ≥ 1, be measurable functions from X to R.

(a) Show that {x : f(x) < g(x)} and {x : f(x) = g(x)} are measurable sets.

(b) Show that {x : lim
k→∞

fk(x) exists and is finite} is measurable.

Solution

(a) Suffice to show {x : F (x) > 0} and {x : F (x) = 0} are measurable. If F is

measurable, use

{x : F (x) > 0} = F−1(0,∞]

{x : F (x) = 0} = F−1[0,∞] ∩ F−1[−∞, 0]

Alternatively, one may consider

{x ∈ X : f(x) < g(x)} =
⋃
r∈Q

(
f−1[−∞, r) ∩ g−1(r,∞]

)
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and

{x ∈ X : f(x) = g(x)} = {x ∈ X : f(x) < g(x)}c ∩ {x ∈ X : f(x) > g(x)}c

(b) Since g(x) =lim sup
k→∞

fk(x) and lim inf
k→∞

fk(x) are measurable.

{x : lim
k→∞

fk(x) exists } = {x : lim inf
k→∞

fk(x) = lim sup
k→∞

fk(x)}

On the other hand, the set{x : g(x) < +∞} is also measurable, so is their

intersection.

(6) There are two conditions (i) and (ii) in the definition of a measure µ on

(X,M). Show that (i) can be replaced by the “nontriviality condition”: There

exists some E ∈M with µ(E) <∞.

Solution If µ is a measure satisfying the nontriviality condition and (ii), let

A1 = E, Ai = φ for i ≥ 2 in ii),

∞ > µ(E) =
∞∑
i=1

µ(Ai) ≥ µ(A1) + µ(A2) = µ(E) + µ(φ)

so 0 ≥ µ(φ) ≥ 0. We have µ is a measure satisfying (i) and (ii).

If µ is a measure satisfying (i) and (ii), taking E = φ, we have the nontriviality

condition.

(7) Let {Ak} be measurable and
∞∑
k=1

µ(Ak) <∞ and

A = {x ∈ X : x ∈ Ak for infinitely many k}.

We know that A is measurable from (1). Show that µ(A) = 0.

Solution Since
∞∑
k=1

µ(Ak) < ∞, we have
∞∑
k=n

µ(Ak) → 0 as n → ∞. For any
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n∈ N , we have

A ⊂
⋃
k≥n

Ak

and so

µ(A) ≤
∞∑
k=n

µ(Ak) .

Taking n→∞, we have µ(A) = 0.

This result is called Borel-Cantelli lemma.

(8) Let B be the set defined in (1). Let µ be a measure on (X,M). Show that

µ(B) ≤ lim inf
k→∞

µ(Ak) .

Solution Using the characterization

B =
∞⋃
k=1

⋂
j≥k

Aj ,

and the fact that {∩j≥kAj} is ascending in k, we have

µ(B) = lim
k→∞

µ

(⋂
j≥k

Aj

)

= lim inf
k→∞

µ

(⋂
j≥k

Aj

)
≤ lim inf

k→∞
µ(Ak) .

(9) Here we review Riemann integral. Let f be a bounded function defined

on [a, b], a, b ∈ R. Given any partition P =
{
a = x0 < x1 < · · · < xn = b

}
on

[a, b] and tags zj ∈ [xj, xj+1], there corresponds a Riemann sum of f given by

R(f, P, z) =
∑n−1

j=0 f(zj)(xj+1 − xj). The function f is called Riemann integrable
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with integral L if for every ε > 0 there exists some δ such that

∣∣R(f, P, z)− L
∣∣ < ε,

whenever ‖P‖ < δ and z is any tag on P . (Here ‖P‖ = maxn−1j=0 |xj+1 − xj| is the

length of the partition.) Show that

1. For any partition P , define its Darboux upper and lower sums by

R(f, P ) =
∑
j

sup
{
f(x) : x ∈ [xj, xj+1]

}
(xj+1 − xj),

and

R(f, P ) =
∑
j

inf
{
f(x) : x ∈ [xj, xj+1]

}
(xj+1 − xj)

respectively. Show that for any sequence of partitions {Pn} satisfying

‖Pn‖ → 0 as n→∞, limn→∞R(f, Pn) and limn→∞R(f, Pn) exist.

2. {Pn} as above. Show that f is Riemann integrable if and only if

lim
n→∞

R(f, Pn) = lim
n→∞

R(f, Pn) = L.

3. A set E in [a, b] is called of measure zero if for every ε > 0, there exists

a countable subintervals Jn satisfying
∑

n |Jn| < ε such that E ⊂
⋃
n Jn.

Prove Lebsegue’s theorem which asserts that f is Riemann integrable if and

only if the set consisting of all discontinuity points of f is a set of measure

zero. Google for help if necessary.

Solution:

(a) It suffices to show: For every ε > 0, there exists some δ such that

0 ≤ R(f, P )−R(f) < ε,
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and

0 ≤ R(f)−R(f, P ) < ε,

for any partition P, ‖P‖ < δ, where

R(f) = inf
P
R(f, P ),

and

R(f) = sup
P
R(f, P ).

.

If it is true, then limn→∞R(f, Pn) and limn→∞R(f, Pn) exist and equal to

R(f) and R(f) respectively.

Given ε > 0, there exists a partition Q such that

R(f) + ε/2 > R(f,Q).

Let m be the number of partition points of Q (excluding the endpoints).

Consider any partition P and let R be the partition by putting together

P and Q. Note that the number of subintervals in P which contain some

partition points of Q in its interior must be less than or equal to m. Denote

the indices of the collection of these subintervals in P by J . We have

0 ≤ R(f, P )−R(f,R) ≤
∑
j∈J

2M∆xj ≤ 2M ×m||P ||,

where M = sup[a,b] |f |, because the contributions of R(f, P ) and R(f,Q) from

the subintervals not in J cancel out. Hence, by the fact that R is a refinement

of Q,

R(f) + ε/2 > R(f,Q) ≥ R(f,R) ≥ R(f, P )− 2Mm||P ||,
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i.e.,

0 ≤ R(f, P )−R(f) < ε/2 + 2Mm||P ||.

Now, we choose

δ <
ε

1 + 4Mm
,

Then for P, ‖P‖ < δ,

0 ≤ R(f, P )−R(f) < ε.

Similarly, one can prove the second inequality.

(b) With the result in part a, it suffices to prove the following result: Let f

be bounded on [a, b]. Then f is Riemann integrable on [a, b] if and only if

R(f) = R(f). When this holds, L = R(f) = R(f).

According to the definition of integrability, when f is integrable, there exists

some L ∈ R so that for any given ε > 0, there is a δ > 0 such that for all

partitions P with ||P || < δ,

|R(f, P, z)− L| < ε/2,

holds for any tags z. Let (P1, z1) be another tagged partition. By the triangle

inequality we have

|R(f, P, z)−R(f, P1, z1)| ≤ |R(f, P, z)−L|+|R(f, P1, z1)−L| < ε/2+ε/2 = ε.

Since the tags are arbitrary, it implies

R(f, P )−R(f, P ) ≤ ε.

As a result,

0 ≤ R(f)−R(f) ≤ R(f, P )−R(f, P ) ≤ ε.
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Note that the first inequality comes from the definition of the upper/lower

Riemann integrals. Since ε > 0 is arbitrary, R(f) = R(f).

Conversely, using R(f) = R(f) in part a, we know that for ε > 0, there exists

a δ such that

0 ≤ R(f, P )−R(f, P ) < ε,

for all partitions P, ‖P‖ < δ. We have

R(f, P, z)−R(f) ≤ R(f, P )−R(f)

≤ R(f, P )−R(f, P )

< ε,

and similarly,

R(f)−R(f, P, z) ≤ R(f, P )−R(f, P ) < ε.

As R(f) = R(f), combining these two inequalities yields

|R(f, P, z)−R(f)| < ε,

for all P, ‖P‖ < δ, so f is integrable, where L = R(f).

(c) For any bounded f on [a, b] and x ∈ [a, b], its oscillation at x is defined by

ω(f, x) = inf
δ
{(sup f(y)− inf f(y)) : y ∈ (x− δ, x+ δ) ∩ [a, b]}

= lim
δ→0+
{(sup f(y)− inf f(y)) : y ∈ (x− δ, x+ δ) ∩ [a, b]}.

It is clear that ω(f, x) = 0 if and only if f is continuous at x. The set

of discontinuity of f , D, can be written as D =
⋃∞
k=1O(k), where O(k) =

{x ∈ [a, b] : ω(f, x) ≥ 1/k}. Suppose that f is Riemann integrable on [a, b].

It suffices to show that each O(k) is of measure zero. Given ε > 0, by
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Integrability of f , we can find a partition P such that

R(f, P )−R(f, P ) < ε/2k.

Let J be the index set of those subintervals of P which contains some elements

of O(k) in their interiors. Then

1

k

∑
j∈J

|Ij| ≤
∑
j∈J

(sup
Ij

f − inf
Ij
f)∆xj

≤
n∑
j=1

(sup
Ij

f − inf
Ij
f)∆xj

= R(f, P )−R(f, P )

< ε/2k.

Therefore ∑
j∈J

|Ij| < ε/2.

Now, the only possibility that an element of O(k) is not contained by one of

these Ij is it being a partition point. Since there are finitely many partition

points, say N , we can find some open intervals I ′1, ..., I
′
N containing these

partition points which satisfy

∑
|I ′i| < ε/2.

So {Ij} and {I ′i} together form a covering of O(k) and its total length is

strictly less than ε. We conclude that O(k) is of measure zero.

Conversely, given ε > 0, fix a large k such that 1
k
< ε. Now the set O(k) is
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of measure zero, we can find a sequence of open intervals {Ij} satisfying

O(k) ⊆
∞⋃
j=1

Ij,

∞∑
j=1

|Iij | < ε.

One can show that O(k) is closed and bounded, hence it is compact. As a

result, we can find Ii1 , ..., IiN from {Ij} so that

O(k) ⊆ Ii1 ∪ ... ∪ IiN ,

N∑
j=1

|Ij| < ε.

Without loss of generality we may assume that these open intervals are mu-

tually disjoint since, whenever two intervals have nonempty intersection,

we can put them together to form a larger open interval. Observe that

[a, b]\(Ii1∪· · ·∪IiN ) is a finite disjoint union of closed bounded intervals, call

them V ′i s, i ∈ A. We will show that for each i ∈ A, one can find a partition

on each Vi = [vi−1, vi] such that the oscillation of f on each subinterval in

this partition is less than 1/k.

Fix i ∈ A. For each x ∈ Vi, we have

ω(f, x) <
1

k
.

By the definition of ω(f, x), one can find some δx > 0 such that

sup{f(y) : y ∈ B(x, δx) ∩ [a, b]} − inf{f(z) : z ∈ B(x, δx) ∩ [a, b]} < 1

k
,

where B(y, β) = (y − β, y + β). Note that Vi ⊆
⋃
x∈Vi B(x, δx). Since Vi is

closed and bounded, it is compact. Hence, there exist xl1 , . . . , xlM ∈ Vi such
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that Vi ⊆
⋃M
j=1B(xij , δxlj ). By replacing the left end point of B(xij , δxlj ) with

vi−1 if xlj − δxlj < vi−1, and replacing the right end point of B(xij , δxlj ) with

vi if xlj + δxlj > vi, one can list out the endpoints of {B(xlj , δlj)}Mj=1 and use

them to form a partition Si of Vi. It can be easily seen that each subinterval

in Si is covered by some B(xlj , δxlj ), which implies that the oscillation of f

in each subinterval is less than 1/k. So, Si is the partition that we want.

The partitions Si’s and the endpoints of Ii1 , ..., IiN form a partition P of [a, b].

We have

R(f, P )−R(f, P ) =
∑
Iij

(Mj −mj)∆xj +
∑

(Mj −mj)∆xj

≤ 2M
N∑
j=1

|Iij |+
1

k

∑
∆xj

≤ 2Mε+ ε(b− a)

= [2M + (b− a)]ε,

where M = sup[a,b] |f | and the second summation is over all subintervals in

Vi, i ∈ A. Hence f is integrable on [a, b].
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