
Chapter 1

Integration on Measure Spaces

A measure space is a triple consisting of a non-empty set X, a σ-algebra (a subset
of the power set of X), and a measure defined on the σ-algebra. Measurable
functions can be defined whenever a σ-algebra is given on X, and the integration
of a non-negative measurable function is possible whenever there is a measure
on the σ-algebra. In the first three sections of this chapter we study measure
spaces and measurable functions. As passing to infinity for functions is very
common in analysis, it is necessary to consider functions taking infinity as their
values, so the extended real number system is introduced in Section 2. Sections
4 and 5 are devoted to the integration theory. Starting with the integration of
simple functions, we next integrate non-negative measurable functions and end up
with arbitrary measurable functions. Properties of the integral and the behavior
of sequences of functions under integration are studied too. In Section 6 we
investigate the relations among four notions of convergence of functions. They
are, namely, pointwise almost everywhere convergence, uniform convergence, L1-
convergence and convergence in measure.

1.1 Measurable Functions

Throughout these notes X always denotes a non-empty set. A σ-algebra M is
a subset of the power set PX of X satisfying (i) X ∈ M, (ii) A′ ∈ M whenever

A ∈ M, and (iii)
∞⋃
j=1

Aj ∈ M, whenever Aj ∈ M, j ≥ 1. Here A′ denotes

the complement of A in X. From (i)–(iii) we immediately deduce the following
properties

• φ ∈M;

• B\A ∈M for A,B ∈M, and
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•
∞⋂
j=1

Aj ∈M for Aj ∈M, j ≥ 1.

Consequently, a σ-algebra is closed under taking complement, and countable
union and intersection. For any given X, there is at least one σ-algebra, namely,
PX , the power set itself. Observe that the intersection of any collection of σ-
algebras is still a σ-algebra. Thus for every subset S of PX , there is a minimal
σ-algebra containing S called the σ-algebra generated by S. Taking X = Rn, the
n-dimensional Euclidean space with the topology induced by the Euclidean norm
and S the collection of all open sets, the σ-algebra generated by S is called the
Borel σ-algebra and its elements are called Borel sets. We will study Borel sets
in Chapter 2.

With a σ-algebraM on X, one can talk about measurable functions. A real-
valued function f is called measurable or, more precisely, measurable with respect
to M orM-measurable, if f−1(G) ∈M for every open set G in R. Recall that a
set G is open if for every x ∈ G, there exists an open interval I containing x that
is contained in G. Therefore, every open set can be written as a union of open
intervals. In fact, one can show that the union can be taken to be a countable
one. (Prove it.) Let G =

⋃
n In where In, n ≥ 1, are open intervals. Using

f−1(
⋃

n In) =
⋃

n f
−1(In) and the fact that a σ-algebra is closed under countable

unions, we see that f is measurable if and only if f−1(a, b) ∈M for all a, b, a < b.
In fact, we have

Proposition 1.1. f is measurable if and only if one of (a)–(d) holds:

(a) f−1(a,∞) ∈M, ∀a ∈ R,

(b) f−1[a,∞) ∈M, ∀a ∈ R,

(c) f−1(−∞, a) ∈M, ∀a ∈ R,

(d) f−1(−∞, a] ∈M, ∀a ∈ R.

Proof. (a) First claim f−1[a,∞) ∈M, for all a ∈ R. Indeed, we have

f−1[a,∞) =
∞⋂
n=1

f−1(a− 1/n,∞) (check!)

As f−1(a− 1/n,∞) is measurable for all n, f−1[a,∞) ∈M is measurable. Using

f−1(a, b) = f−1(a,∞)\f−1[b,∞) ∈M,

f−1(a, b) is measurable. The proofs of (b)–(d) are similar.

Next we examine how measurability is preserved feasibly under composition
of functions, algebraic operations, and in the process of passing to limits.
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Proposition 1.2. Let Φ : R→ R be continuous. For every measurable f , Φ ◦ f
is measurable.

Recall that Φ is continuous means for each x ∈ R and {xn} such that xn → x,
f(xn) → f(x). It can be shown that this is equivalent to, f−1(G) is open for
every open G.

Proof. For every open set G, Φ−1(G) is open in R. From (Φ ◦ f)−1(G) =
f−1(Φ−1(G)) ∈M, so Φ ◦ f is measurable.

By choosing the continuous functions Φ(z) = z2 in this proposition, we deduce
that f 2 is measurable provided f is measurable. By choosing other suitable Φ’s,
we conclude that f+, f−, and |f | are measurable when f is measurable. We point
out that the assumption Φ : R→ R can be relaxed to Φ : V → R where V is an
open set in R and the same conclusion still holds. It is because Φ−1(G) is now
open in V . However, as V is open, it is also open in R.

Proposition 1.3. (a) All measurable functions form a vector space.
(b) fg is measurable whenever f and g are measurable.
(c) f/g is measurable provided f and g are measurable and g(x) 6= 0 for every
x.

Proof. (a) Clearly, a constant multiple of a measurable function is measurable.
It suffices to show that f + g is measurable for measurable f and g, but this
follows from the formula

(f + g)−1(a,∞) =
⋃

t+s>a
t,s∈Q

f−1(t,∞) ∩ g−1(s,∞) ∈M.

To verify this formula, let’s consider a point x satisfying (f + g)(x) > a. We
can always choose two rational numbers t and s such that f(x) > t, g(x) > s
and t + s > a. It follows that x ∈ f−1(t,∞)

⋂
g−1(s,∞), and we have one side

inclusion. The other side inclusion is immediate.
(b) From

fg =
1

4

[
(f + g)2 − (f − g)2

]
,

we conclude that fg is measurable from (a).
(c) It suffices to show that 1/g is measurable. This follows from the remark right
after the proof of Proposition 1.2. We simply take Φ(z) = 1/z. An alternate, ele-
mentary proof runs as follows: For a, b > 0, we have (1/g)−1(a, b) = g−1(1/b, 1/a)
is measurable. A similar result holds when a, b < 0. When a < 0 < b, it suffices
to observe that (1

g

)−1
(a, b) =

(1

g

)−1
(a, 0)

⋃(1

g

)−1
(0, b)
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and (1/g)−1(a, 0) =
⋃

n(1/g)−1(a,−1/n).

Proposition 1.4. Let fk, k ≥ 1, be measurable. Then

sup
k
fk(x), inf

k
fk(x), lim

k→∞
fk(x) and lim

k→∞
fk(x)

are all measurable provided they are finite everywhere.

Proof. Letting
g(x) = sup

k
fk(x),

we have

g−1(a,∞) =
∞⋃
k=1

f−1k (a,∞) ∈M,

so g is measurable. Similarly, infk fk is measurable. On the other hand, by
definition

lim
k→∞

fk(x) = inf
k

sup
j≥k

fj(x),

and
lim
k→∞

fk(x) = sup
k

inf
j≥k

fj(x),

so they are also measurable.

1.2 Extened Real Numbers

In real analysis we need to pass to limit all the time. It will be convenient to
take infinity as the value of functions. For this reason, we need to extend the real
number system to accommodate the infinity. The extended real number system R
is obtained from R by adding ∞ and −∞, that is, R = R∪ {∞,−∞}. It carries
a metric structure given by, for every x, y ∈ R,

d(x, y) = | tan−1 x− tan−1 y|,

d(∞, x) = d(x,∞) =
∣∣∣π
2
− tan−1 x

∣∣∣ ,
d(−∞, x) = d(x,−∞) =

∣∣∣tan−1 x+
π

2

∣∣∣ ,
d(∞,−∞) = d(−∞,∞) = π.
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The induced topology of this metric structure on R coincides with the usual
topology. Next, we extend the algebraic structure a little bit by setting

x+∞ =∞+ x =∞,
x−∞ = −∞+ x = −∞,
x · ∞ =∞, ∀x ∈ (0,∞],

x · ∞ = −∞, ∀x ∈ [−∞, 0),

0 · ∞ = 0, 0 · (−∞) = 0,

x · (−∞) = −∞, ∀x ∈ (0,∞],

x · (−∞) =∞, ∀x ∈ [−∞, 0).

Note that ∞ − ∞ is undefined. By a routine argument, one can show that
the associative, distributive and commutative laws are valid as long as both
sides of the formulas are well-defined. Moreover, (x, y) → x + y is continu-
ous from R/{(∞,−∞), (−∞,∞)} to R, and (x, y) → xy is continuous from
R \ {(±∞, 0), (0,±∞) to R.

From now on the notation R stands for the extended real numbers with the
topological and algebraic structure described above.

We note that in calculus, a sequence {xn} tends to infinity means for each
M > 0, there exists some n0 such that

xn > M, ∀n ≥ n0

and the notation xn →∞ is used. In R, xn →∞ allows another interpretation;
now ∞ is a point in R. It means

d(xn,∞)→ 0 as n→∞.

It is easy to see that both interpretations are consistent.
An extended real-valued function f is measurable if f−1(G) ∈ M for every

open G open R. As every open set in R can be written as the countable union
of intervals of the form (a, b), (a,∞], [−∞, a), a, b ∈ R, f is measurable if and
only if f−1(a, b), f−1(a,∞], f−1[−∞, a) are in M. In fact, it suffices to check
f−1(a, b), f−1(∞), f−1(−∞) ∈ M. Corresponding to Propositions 1.2 and 1.4,
we have

Proposition 1.2’. Let Φ : R → R be continuous. For every measurable, ex-
tended real-valued f , Φ ◦ f is measurable.

Proposition 1.4’. Let fk, k ≥ 1, measurable, extended real-valued functions.
Then

sup
k
fk(x), inf

k
fk(x), lim

k→∞
fk(x), and lim

k→∞
fk(x)

are measurable, extended real-valued functions.
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As ∞−∞ does not make sense, extended real-valued functions do not form
a vector space.

1.3 Measure Space

Let M be a σ-algebra on X. A measure µ is a function from M to [0,∞]
satisfying

(i) µ(φ) = 0 and

(ii) (Countable Additivity)

µ
( ∞⋃

k=1

Ak

)
=
∞∑
k=1

µ(Ak),

if Ak ∈M, k ≥ 1, are mutually disjoint.

From (i) and (ii) one deduces, for every A,B ∈M,

• µ(B) = µ(A) + µ(B\A) provided A ⊂ B.

• µ(A) ≤ µ(B), ∀A ⊂ B ; and

• (Countable Subadditivity)

µ(
∞⋃
j=1

Aj) ≤
∞∑
j=1

µ(Aj), Aj ∈M, j ≥ 1.

We recall the proof. Let B1 = A1, B2 = A2 \ A1, B3 = A3 \ (A1

⋃
A2), · · · . Then

Bj’s are disjoint, Bj ⊂ Aj, and
⋃

j Bj =
⋃

j Aj. By countable additivity,

µ(
⋃
j

Aj) = µ(
⋃
j

Bj) =
∑
j

µ(Bj) ≤
∑
j

µ(Aj).

The triple (X,M, µ) is called a measure space.

Example 1.1. For any subset E in X, define c(E) to be the number of elements
in E. Set c(E) to be ∞ if E is an infinite set. Then (X,PX , c) is called the
counting measure on X.

Example 1.2. Let BN be the collection of all sequences of the form a1a2 · · · aN
where aj ∈ {0, 1}, j = 1, · · · , N . This is a finite set consisting of 2N elements.
For each singleton {x} in the power set of BN we assign µ({x}) = 1/2N . The
measure space (BN ,PBN

, µ) is called the N -Bernoulli space. In general, a measure
space (X,M, µ) satisfying µ(X) = 1 a probability measure. Each element in BN

6



represents the outcome of N many times of tossing a coin where 0 and 1 indicate
a head and a tail respectively.

In general, a measure space (X,M, µ) satisfying µ(X) = 1 is called a proba-
bility measure. The Bernoulli spaces are probability spaces. A measure space is
the setting for probability theory.

Example 1.3. Fix a point a in X and define δa(E) = 1 or 0 according to whether
a ∈ E or not. The triple (X,PX , δa) is called the Dirac measure at a.

Example 1.4. We have learned that the Lebesgue measure L1 is a measure on
M, the σ-algebra containing all Lebesgue measurable sets in R, which satisfies
L1
(
(a, b)

)
= b− a for a ≤ b. It is known that M is a proper subset of PR which

strictly contains all Borel sets. Remember the existence of non-measurable sets !

We have the following basic result.

Proposition 1.5. Let (X,M, µ) be a measure space.

(a) Let Ak, k ≥ 1, be an ascending sequence of measurable sets. We
have

µ
( ∞⋃

k=1

Ak

)
= lim

n→∞
µ(An).

(b) Let Ak, k ≥ 1, be a descending sequence of measurable sets. We
have

µ
( ∞⋂

k=1

Ak

)
= lim

n→∞
µ(An),

provided µ(A1) <∞.

We call a sequence of sets Ak ascending (resp. descending) if Ak ⊂ Ak+1 (resp.
Ak+1 ⊂ Ak) for all k.

Proof. (a) Let B1 = A1, B2 = A2\A1, B3 = A3\A1 ∪ A2, · · · etc. Then {Bk} is
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mutually disjoint and
⋃n

k=1Bk =
⋃n

k=1Ak, n ≤ ∞. By countable additivity,

µ
( ∞⋃

k=1

Ak

)
= µ

( ∞⋃
k=1

Bk

)
=

∞∑
k=1

µ(Bk)

= lim
n→∞

n∑
k=1

µ(Bk)

= lim
n→∞

µ
( n⋃

k=1

Bk

)
= lim

n→∞
µ(An).

(b) Let Ck = A1 \ Ak, k ≥ 2. Then {Ck} is ascending and by (a),

µ
( ∞⋃

k=1

Ck

)
= lim

n→∞
µ(Cn)

= lim
n→∞

µ(A1 \ An)

= lim
n→∞

(
µ(A1)− µ(An)

)
= µ(A1)− lim

n→∞
µ(An).

As

∞⋃
k=1

Ck =
∞⋃
k=1

(A1

⋂
A′k)

= A1

⋂ ∞⋃
k=1

A′k

= A1 \
∞⋂
k=1

Ak ,

µ
( ∞⋃
k=1

Ck

)
= µ

(
A1 \

∞⋂
k=1

Ak

)
= µ(A1)− µ

( ∞⋂
k=1

Ak

)
,

and the result follows as µ(A1) <∞.
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We point out that the assumption µ(A1) <∞ in Proposition 1.5 (b) is needed.
To see this let X = R and consider the descending intervals Ak = [k,∞), k ≥ 1.
Then

⋂∞
k=1Ak = φ and L1

(⋂∞
k=1Ak

)
= 0. However, on the other hand, L1(Ak) =

∞ for all k.

1.4 Integration on Measure Space

Let (X,M, µ) be a measure space. A simple function is a measurable, real-valued
function in X whose range is a finite set. It can be expressed in the form

s(x) =
N∑
j=1

αjχAj
(x)

where α1 < α2 < · · · < αN and Aj = {x ∈ X : s(x) = αj}, j ≥ 1, are mutually
disjoint. It is clear that such representation of a simple function is unique. In gen-
eral, a function of the form s(x) =

∑N
j=1 γjχEj

where γj ∈ R and Ej, j = 1, · · · , N,
are not necessarily mutually disjoint measurable sets, is a simple function since its
range is a finite set. It can always be expressed in the form

∑M
j=1 αjχFj

where αj

are distinct and in ascending order and Fj are mutually disjoint and measurable.
We may call it the “standard form” of s.

Simple functions are not to be confused with step functions. Recall that a
step function is a function defined on [a, b] which can be expressed in the form∑

k αkχIk , where the sum is finite and Ik’s are bounded intervals. A step function
is always a simple functions (for the Lebesgue measure), but not every simple
function is a step function. Moreover, step functions can only be defined on R.

The following result demonstrates the importance of simple functions.

Theorem 1.6. Let f be a non-negative, measurable extended real-valued function
in (X,M, µ). There exists a sequence of non-negative simple functions {sk}, k ≥
1, such that for all x,

(a) sk(x) ≤ sk+1(x), ∀k ≥ 1; and

(b) sk(x)→ f(x), as k →∞.

Proof. We define, for each k, a function ϕk on [0,∞] as follows. Divide [0,∞)
into subintervals [j/2k, (j + 1)/2k), j = 0, 1, . . . , k2k − 1, and [k,∞) and define
ϕk(t) = j/2k for t ∈ [j/2k, (j + 1)/2k) and ϕk(t) = k for t ≥ k. Then ϕk ≤ ϕk+1

for all k. Next we define sk(x) = ϕk(f(x)), ∀x ∈ X. From the definition of ϕk

we know that

sk(x) ≤ f(x) ≤ sk(x) +
1

2k
, if f(x) ∈ [0, k)
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and f(x) ≥ sk(x) if f(x) ≥ k. It follows that sk(x) → f(x), ∀x. The last thing
we need to check is that sk is measurable. But this follows from the fact that ϕk

is a step function where the inverse image of an interval under ϕk is an interval.
Check it.

In this section we discuss how to integrate a measurable function over a mea-
surable space (X,M, µ). We will accomplish this in three steps, first for for simple
functions, next for non-negative measurable functions and finally for measurable
functions.

In the following we sometimes call a function measurable in X without re-
ferring to the σ-algebra and the measure when it is easily identified in the context.

We briefly describe the ideas behind the abstract integration theory in light of
Lebesgue and Riemann integrals. In fact, for a non-negative function f defined
on [0, 1], say, its integral over [0, 1] is the area between the x-axis and the graph
of f bounded by the two vertical lines x = a, b. Consider first the function
f1(x) = 1. Clearly its area is equal to 1. Next consider f2(x) which is equal to 0
when x = 1/2k, k ≥ 1, and 1 otherwise. The area of f2 exists and is equal to 1.
To see why the area is equal to 1, for each small ε > 0, consider the rectangles
Rk = [1/2k− ε/2k+1, 1/2k + ε/2k+1]× [0, 1], k ≥ 1. The total sum of area of these
rectangles are bounded by

∑
k ε/2

k = ε (Note that some Rk may overlap.) As
f1 is equal to 1 outside [1/2k − ε/2k+1, [1/2k + ε/2k+1], the area of f2 is bounded
between 1 − ε and 1. As ε can be arbitrarily small, the area of f2 is equal to 1.
Now, let {xk} be a sequence in [0, 1] and let f3 be the function which is equal
to 0 at xk and 0 elsewhere. The same argument above shows that the area of
f3 should be equal to 1. As all rational numbers form a countable set, we can
take {xk} to be the set of all rational numbers in [0, 1]. Then f3(x) becomes
the function f4(x) which is equal to 0 when x is rational and to 1 when x is
irrational. Although we have argued and been convinced that the area of f4 is
equal to 1, it is well-known that f4 is not Riemann integral. While our argument
is quite reasonable, there must be something wrong with Riemann integral. In
fact, the defect of Riemann integral lies on its definition where it is required the
Riemann sums converge to the same number as their lengths shrink to 0. Since
there are rational and irrational numbers in any interval, the Riemann sums for
any partition could be 1 or 0 depending on the tags, and thus do not converge to
a definite value. This undesirable situation can be remedied by considering more
general sums rather than the Riemann sums. Indeed, it is more reasonable to
define the area of f over [0, 1] to be

sup
{∑

j

αj|Ej| : s(x) =
∑
j

αjχEj
(x) ≤ f(x),∀x ∈ [0, 1], Ej ⊂ [0, 1]

}
,

where |E| denotes the “length” of E. Note that in Riemann integral one essen-
tially takes Ej’s to be disjoint intervals. In the example above, the area of f4 is
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attained by taking s(x) = 1 × χ[0,1]\Q + 0 × χQ∩[0,1]. Thus integration theory is
built upon measure theory and measure theory was developed in an endeavor to
understand the meaning of length for any set E.

Let s be a non-negative simple function given in standard form
∑N

j=1 αjχAj
.

We define the integral of s over the measurable set E to be, in notation,∫
E

s dµ =
N∑
j=1

αjµ(E ∩ Aj).

Although the values of a simple function are finite, µ(E ∩ Aj) could be infinite.
From this definition we see that the value of the integral lies in [0,∞].

Recall that a function of the form
∑N

j=1 βjχEj
where Ej’s are measurable is a

simple function. We first show that its integral can be expressed in terms of βj
and Ej without requiring them to be distinct or mutually disjoint.

Proposition 1.7. Let s =
∑N

j=1 βjχEj
be a non-negative simple function. Then

∫
E

s dµ =
N∑
j=1

βjµ(E ∩ Ej), ∀E ∈M.

Consequently, ∫
E

(s+ t)dµ =

∫
E

sdµ+

∫
E

tdµ,

where t is a non-negative simple function.

Proof. First of all, we observe that this formula holds when βj’s are not necessarily
distinct and Ej’s are mutually disjoint.

To treat the general case, we can decompose {Ej} into a mutually disjoint
family of non-empty sets {Fi} such that each Fi is contained in some Ej and
each Ej is the union of those Fi’s lying inside Ej. Indeed, each Fi is of the form
A1 ∩ A2 · · · ∩ AN where Ak is either Ek or E ′k (but excluding E ′1 ∩ E ′2 · · · ∩ E ′N).
There are at most 2n − 1 of them. We have

s =
∑

βjχEj

=
∑
j

βj
∑
Fi⊂Ej

χFi

=
∑
i

( ∑
j, Fi⊂Ej

βj

)
χFi

=
∑
i

γiχFi
, γi ≡

∑
j, Fi⊂Ej

βj.
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As {Fi} are mutually disjoint but γi’s are not necessarily distinct. By the remark
beginning in this proof,∫

E

s dµ =
∑

γiµ(E ∩ Fi)

=
∑
i

∑
j, all Fi⊂Ej

βjµ(E ∩ Fi)

=
∑
j

βj
∑

i, Fi⊂Ej

µ(E ∩ Fi)

=
∑
j

βjµ(E ∩ Ej),

and the result follows.

Next, for a measurable function f : X → [0,∞] and a measurable set E, we
define its integral over E to be, in notation,∫

E

f dµ = sup

{∫
E

s dµ : s ≤ f a.e., s is a non-negative simple function

}
.

Here s ≤ f a.e. means that s is less than or equal to f almost everywhere, in
other words, there exists a measurable set N of measure zero such that s ≤ f
in X \N . The definition is consistent with the principle that integration over a
set of measure zero is equal to zero even though the integrand reaches infinity
somewhere. Alternatively one could define the integral to be∫

E

f dµ = sup

{∫
E

s dµ : s ≤ f, s is a non-negative simple function

}
.

It is not hard to see that both definitions are the same. Indeed, let s, s ≤ f a.e.,
we can produce another simple function s1, s1 ≤ f everywhere, satisfying∫

E

s1dµ =

∫
E

sdµ .

Let s =
∑

j αjχEj
. We set Aj = {x ∈ Ej : s(x) > f(x)}. Then ∪Nj=1Aj is a null

set. The simple function s1 =
∑

j αjχEj\Aj
satisfies our requirement.

We point out that when f is a simple function, these definitions coincide with
the integral of a simple function defined before.

Here are some elementary properties of the integral.

Proposition 1.8. Let f and g be measurable functions from X to [0,∞]. We
have
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(a)

∫
E

f dµ =

∫
X

fχE dµ, ∀E ∈M,

(b)

∫
X

g dµ ≥
∫
X

f dµ if g ≥ f a.e.. When

∫
X

g dµ is finite, equality holds if

and only if g = f a.e.,

(c)

∫
E1

f dµ ≤
∫
E2

f dµ for measurable E1, E2, E1 ⊂ E2,

(d) c

∫
X

f dµ =

∫
X

cf dµ, ∀c ∈ [0,∞).

In the following we drop the subscript X when the domain of integration is
over the whole space.

Proof. (a) For any s =
∑

k αkχk ≤ f a.e., we have∫
E

sdµ =
∑
k

αkµ(E ∩ Ek) =

∫
X

sχEdµ,

and the conclusion follows from the definition of the integral.
(b) Obviously, when f ≤ g a.e.,∫

f dµ ≤
∫
g dµ.

Now, suppose that g > f on some A ∈ M, µ(A) > 0. Letting An =
{
x ∈ A :

g(x) > f(x) + 1/n
}

, we have A =
⋃

n=1An. By Proposition 1.5(a) there exists
some An0 with positive measure such that g > f + 1/n0 on An0 . For any simple
s ≤ f a.e.,

g ≥ s+
1

n0

χAn0
a.e.,

so ∫
g dµ ≥

∫
s dµ+

1

n0

µ(An0),

by Proposition 1.7. (b) follows from this inequality after taking supremum over
s.
(c) It follows from combining (a) and (b).
(d) Use the definition of the integral.

Next we have
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Proposition 1.9 (Markov’s Inequality). Let f be a non-negative measurable
function from X to [0,∞] with finite integral. Then

µ
({
x ∈ X : f(x) ≥M

})
≤ 1

M

∫
X

fdµ,

for all M > 0. Consequently

(a) Every integrable function is finite a.e..

(b) f = 0 a.e. if f is integrable and
∫
f = 0.

Proof. Let
AM = {x ∈ X : f(x) ≥M} .

We have f ≥ fχAM
, so∫

fdµ ≥
∫
fχAM

dµ

=

∫
AM

fdµ

≥
∫
AM

Mdµ = Mµ(AM) ,

from which the inequality follows. To prove (a), we note that A∞ ⊂ AM for all
finite M > 0. When

∫
fdµ is finite, we let M → ∞ in the Markov’s inequality

to get

µ(A∞) ≤ lim
M→∞

µ(AM)

≤ lim
M→∞

1

M

∫
fdµ

= 0 .

To prove (b), we note that

P = {x ∈ X : f(x) > 0} =
∞⋃
k=1

AA1/k
.

But Markov’s inequality tells us that µ(A1/k) = 0 for all k when the integral of f
vanishes. It follows that

µ(P ) ≤
∞∑
k=1

µ(A1/k) = 0 ,

so f is equal to zero a.e. .
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Now we establish two basic results, namely, Lebsegue’s monotone convergence
theorem and Fatou’s lemma.

Given a sequence of measurable functions which converges to some function
almost everywhere, we would like to study when their integrals converge to the
integral of the limit function. However, examples show that this is not always
true. Here are some typical situations.

Example 1.5 (Mass leaking at peaks). Take ϕk = 0 in (1/k, 1], ϕk(0) = k and
linear between (0, 1/k). Then ϕk → 0 except at x = 0, so∫

lim
k→∞

ϕk dL1 = 0 but

∫
ϕk dL1 = 1, ∀k.

Example 1.6 (Mass vanishing at infinity). Take fk = χ[k,k+1]. Then lim
k→∞

fk(x) =

0, so ∫
lim
k→∞

fk dL1 = 0 but

∫
fk dL1 = 1, ∀k.

Example 1.7 (Mass dispersing away). Take gk = k−1χ[0,k], k ≥ 1. Then
limk→∞ gk(x) = 0 for all x, so∫

lim
k→∞

fk dL1 = 0 but

∫
gk dL1 = 1, ∀k.

In light of these examples we need to impose further assumptions on the
sequence in order to achieve this goal. The following theorem, making use of a
monotonicity assumption, is one of the most frequently used results in integration
theory.

Theorem 1.10 (Lebesgue’s Monotone Convergence Theorem). Let f, fk, k ≥
1, be extended real-valued nonnegative measurable functions in the measure space
(X,M, µ). Suppose that there exists a measurable set N of zero measure such
that f, fk are non-negative and satisfy fk(x) ↑ f(x) for x ∈ X \N . Then

lim
k→∞

∫
fk dµ =

∫
f dµ.

Proof. As f ≥ fk a.e., by Proposition 1.8(b),∫
f dµ ≥

∫
fk dµ, ∀k,

which implies ∫
f dµ ≥ lim

k→∞

∫
fk dµ.
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The limit on the right hand side exists because {fk} is increasing. On the other
hand, fix some δ ∈ (0, 1). For any s ≤ f a.e., there exists a set of mea-
sure zero N1 such that s ≤ f in X \ N1. Let Y = X \ (N ∪ N1) and Ek =
{x ∈ Y : fk(x) ≥ δs(x)} . Clearly, Ek is ascending. We claim that

⋃∞
k=1Ek = Y.

For, if x ∈ Y and f(x) = 0, then s(x) = 0 and x ∈ Ek for all k. If∞ > f(x) > 0,
then δs(x) ≤ δf(x) < fk(x) for all large k. When f(x) = ∞, fk(x) → ∞, so
δs(x) < fk(x) for all large k too.

Consequently, for these k,∫
fk dµ ≥

∫
Ek

fk dµ

≥ δ

∫
Ek

s dµ

= δ
N∑
j=1

αjµ(Ek ∩ Aj), if s =
∑

αjχAj
.

Therefore,

lim
k→∞

∫
fk dµ ≥ δ

N∑
j=1

αj lim
k→∞

µ(Ek ∩ Aj)

= δ
N∑
j=1

αjµ(Y ∩ Aj) (Proposition 1.5(a))

= δ
N∑
j=1

αjµ(Aj) (∵ µ(N ∪N1) = 0)

= δ

∫
s dµ .

Taking supremum over s,

lim
k→∞

∫
fk dµ ≥ δ

∫
f dµ

and

lim
k→∞

∫
fk dµ ≥

∫
f dµ

holds after letting δ ↑ 1.

The next result is also a frequently used one.

Theorem 1.11 (Fatou’s Lemma). Let {fk} be a sequence of extended real-
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valued measurable functions which are non-negative a.e.. Then∫
lim
k→∞

fk dµ ≤ lim
k→∞

∫
fk dµ.

Proof. Set gk(x) = inf
j≥k

fj(x). Then each gk is measurable and {gk} is an increasing

sequence. The function g given by

g(x) ≡ lim
k→∞

gk(x) = sup
k
gk(x) = lim

k→∞
fk(x) ≥ 0

is measurable. By Lebesgue’s monotone convergence theorem,∫
lim
k→∞

fk dµ ≡
∫
g dµ

= lim
k→∞

∫
gk dµ

= lim
k→∞

∫
gk dµ

≤ lim
k→∞

∫
fk dµ .

Previous examples show that strict inequality could occur in Fatou’s lemma.

Now we establish the linearity of the integral.

Proposition 1.12. Let f and g be extended real-valued, nonnegative measurable
functions in X and α, β ≥ 0. Then∫

(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ.

Proof. By Theorem 1.6, we can find sequences of simple functions {sj}, {tj},
sj ↑ f , tj ↑ g in X. Thus αsj + βtj ↑ f + g and∫

(αf + βg) dµ = lim
j→∞

∫
(αsj + βtj) dµ (monotone convergence theorem)

= lim
j→∞

(∫
αsj dµ+

∫
βtj dµ

)
(Proposition 1.7)

=

∫
αfdµ+

∫
βgdµ

= α

∫
f dµ+ β

∫
g dµ. (Proposition 1.8)
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So far we have been considering non-negative functions. Now we come to
functions which may change sign. For a measurable function f , its positive and
negative parts f+ and f− are non-negative and measurable. The integrals∫

f+ dµ and

∫
f− dµ

both make sense. If either one of these integrals is finite, we define∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

An extended real-valued measurable function f in X is called integrable if both∫
f+ dµ and

∫
f− dµ are finite. Using Proposition 1.12, when a function f is

integrable, we have ∫
|f |dµ =

∫ (
f+ + f−

)
dµ

=

∫
f+dµ+

∫
f−dµ <∞,

so |f | is also integrable. It follows from Markov’s inequality that every integrable
function is finite a.e. .

Proposition 1.13. Let f and g be integrable in X and α, β ∈ R such that
αf + βg is well-defined in X. Then αf + βg is integrable and∫

(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ.

Moreover, ∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.
Since f and g are extended real-valued and integrable, they are finite almost
everywhere. The combination αf + βg may not be defined over a null set. When
this happens, we may assign∞ (or any other fixed value) to αf +βg at all points
in this set. Under this convention αf + βg is a measurable function defined
everywhere and this proposition still holds.

Proof. Observe that (f + g)+, (f + g)− ≤ |f + g| ≤ |f |+ |g| so∫
(f + g)± dµ ≤

∫
(|f |+ |g|) dµ =

∫
|f | dµ+

∫
|g| dµ <∞.

We conclude that f + g is integrable.
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In the following we assume that f and g are finite everywhere. Otherwise
we restrict to X \ N where N is the null set consisting of all points either f
or g becomes infinity. Using f + g = (f + g)+ − (f + g)− on one hand and
f + g = f+ − f− + g+ − g− on the other hand, we have

(f + g)+ + f− + g− = (f + g)− + f+ + g+ on X.

Therefore,∫
(f + g)+ dµ+

∫
f− dµ+

∫
g− dµ =

∫
(f + g)− dµ+

∫
f+ dµ+

∫
g+ dµ

by Proposition 1.12. It follows that∫
(f + g) dµ =

∫
(f + g)+dµ−

∫
(f + g)−dµ

=

∫
f+dµ−

∫
f−dµ+

∫
g+dµ−

∫
g−dµ

=

∫
f dµ+

∫
g dµ.

Next, we need to show

α

∫
f dµ =

∫
αf dµ, ∀α ∈ R.

When α ≥ 0, this is contained Proposition 1.12. To show it for α < 0 it suffices
to show

−
∫
f dµ =

∫
(−f) dµ.

Indeed, we have ∫
f dµ+

∫
(−f) dµ =

∫ [
f + (−f)

]
dµ = 0.

Finally, we have ∣∣∣∣∫ f dµ

∣∣∣∣ =

∣∣∣∣∫ f+ dµ−
∫
f− dµ

∣∣∣∣
≤

∫
f+ dµ+

∫
f− dµ

=

∫
|f |dµ .
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The following result ensures when pointwise convergence implies convergence
in the corresponding integrals. The required condition is the existence of a domi-
nator for the sequence of functions under consideration. While Lebesgue’s mono-
tone convergence theorem and Fatou’s lemma apply to non-negative functions,
Lebesgue’s dominated convergence theorem deals with functions that may change
sign. It is more general.

Theorem 1.14 (Lebesgue’s Dominated Convergence Theorem). Let f, fk,
k ≥ 1, be extended real-valued measurable in X satisfying fk → f a.e. and |fk| ≤ g
a.e. for some integrable g. Then f is integrable and

lim
k→∞

∫
|fk − f | dµ = 0.

Proof. By assumption, the function 2g − |fk − f | is non-negative a.e.. We can
apply Fatou’s lemma to get∫

2g dµ =

∫
lim
k→∞

(2g − |fk − f |) dµ

≤ lim
k→∞

∫
(2g − |fk − f |) dµ

=

∫
2g dµ− lim

k→∞

∫
|fk − f | dµ.

As

∫
g dµ <∞, we can cancel it from both sides to get

lim
k→∞

∫
|fk − f | dµ ≤ 0.

Note that

∫
|fk − f | dµ→ 0 implies

∫
fk dµ→

∫
f dµ.

Corollary 1.15 (Tonelli’s Theorem). Let ak, k ≥ 1, be extended real-valued
measurable and

∞∑
k=1

∫
|ak(x)| dµ <∞.

Then
∞∑
k=1

ak is integrable and

∫ ∞∑
k=1

ak dµ =
∞∑
k=1

∫
ak dµ <∞ .
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Proof. Set

gk(x) =
k∑

j=1

|aj(x)| , g(x) =
∞∑
j=1

|aj(x)| ,

hk(x) =
k∑

j=1

aj(x), h(x) =
∞∑
j=1

aj(x).

As gk ↑ g, by the monotone convergence theorem∫
g dµ =

∫
lim
k→∞

gk dµ =
∞∑
j=1

∫
|aj(x)| dµ <∞,

whence g is integrable. Now the corollary follows from using g as a dominator
for hk and applying the dominated convergence theorem.

More convergence theorems can be found in Chapter 4.

1.5 Convergence of Measurable Functions

For a sequence of measurable functions from the measure space (X,M, µ) to R
or R, the following four notions of convergence make sense.

• {fk} converges to f almost everywhere, that is, there exists a null set N
such that fk(x)→ f(x) for all x ∈ X \N as k →∞.

• {fk} converges to f uniformly on a subset Y , that is, for each ε > 0, there
exists some k0 such that |fk(x)− f(x)| < ε, for all k ≥ k0 and x ∈ Y .
(Assuming that fk(x) and f(x) do not taking ∞ or −∞ simultaneously.)

• {fk} converges in f in L1-sense, that is, lim
k→∞

∫
|fk − f | dµ = 0.

• {fk} converges to f in measure, that is, for each ρ > 0,

lim
k→∞

µ
(
{x ∈ X : |fk(x)− f(x)| ≥ ρ}

)
= 0.

It is implicitly assumed that fk(x)−f(x) is well-defined almost everywhere.
Note that the set {x ∈ X : |fk(x)− f(x)| ≥ ρ} is measurable.

In this section we discuss some relations among them.

Theorem 1.16 (Egorov Theorem). Let f, fk, k ≥ 1, be extended real-valued
measurable functions in X which are finite a.e.. Suppose that µ(X) is finite and
fk → f a.e. as k → ∞. Then for each ε > 0, there exists a measurable A,
µ(A) < ε, such that fk → f uniformly on X \ A as k →∞.
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Proof. WLOG assume that fk and f are finite everywhere. Set

Ai
j =

⋃
k≥j

{
x : |fk(x)− f(x)| ≥ 1

2i

}
.

For each fixed i, {Ai
j} is a descending family inM. As µ(X) <∞, by Proposition

1.5 we have

µ
( ∞⋂

j=1

Ai
j

)
= 0.

We can find a large J(i) such that

µ
(
Ai

J(i)

)
<

ε

2i
.

The set A =
⋃∞

i=1A
i
J(i), satisfies

µ(A) ≤
∞∑
i=1

µ
(
Ai

J(i)

)
<
∞∑
i=1

ε

2i
= ε.

We claim that fk → f uniformly on X \ A. For, if x /∈ A, x does not belong to
Ai

J(i) for all i. In other words,

|fk(x)− f(x)| < 1

2i
, ∀k ≥ J(i).

Given ε > 0, we can find a large i such that 2−i < ε. Then

|fk(x)− f(x)| < ε, ∀x ∈ X \ A, ∀k ≥ J(i).

Consider fk(x) = χ[k,k+1], k ≥ 1. Then {fk} converges pointwisely to 0 as
k → ∞, but cannot converge to 0 uniformly away from a set of finite measure.
It shows that the condition L1(X) <∞ cannot be removed.

Proposition 1.17. If {fk} converges to f in measure, then it admits a subse-
quence {fkj} converging to f a.e. as kj →∞.

Proof. As {fk} converges to f in measure, we can pick a subsequence {fkj} such
that

µ
({
x :
∣∣fkj(x)− f(x)

∣∣ ≥ 1

j

})
<

1

2j
.

Set

Bn =
⋃
j≥n

{
|fkj − f | ≥

1

j

}
,
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where
{ ∣∣fkj − f ∣∣ ≥ 1/j

}
is the short form for

{
x ∈ X :

∣∣fkj(x)− f(x)
∣∣ ≥ 1/j

}
.

Then {Bn} is descending and

µ(B1) = µ
( ∞⋃

j=1

{ ∣∣fkj − f ∣∣ ≥ 1

j

})
≤

∞∑
j=1

µ
({ ∣∣fkj − f ∣∣ ≥ 1

j

})
≤

∞∑
j=1

1

2j
= 1.

Applying Proposition 1.5, we have

µ
( ∞⋂

n=1

Bn

)
= lim

n→∞
µ(Bn)

≤ lim
n→∞

∞∑
j=1

1

2n+j
= 0.

The set N ≡
⋂∞

n=1Bn is of measure zero. We claim that {fkj} converges to f on
X \ N . Indeed, for x ∈ X \ N , x ∈

⋃∞
n=1B

′
n. There exists some n1 such that

x ∈ B′n1
. From the definition of Bn1 ,∣∣fkj(x)− f(x)

∣∣ < 1

j
, ∀j ≥ n1,

so {fkj(x)} converges to f(x) for each x ∈ X \N .

One may also prove this result by using Borel-Cantelli lemma.

Proposition 1.18. Let f, fk, k ≥ 1, be measurable functions from X to R which
are finite a.e.. Suppose that µ(X) is finite and fk → f a.e. as k → ∞. Then
{fk} converges to f in measure.

Proof. By Egorov theorem, for ε > 0, there exists some measurable A, µ(A) < ε,
such that fk → f uniformly on X \ A. Therefore, for ρ > 0, we can find k0
such that |fk(x) − f(x)| < ρ for all k ≥ k0 and x ∈ X \ A. It follows that{
x : |fk(x) − f(x)| ≥ ρ, x ∈ X, ∀k ≥ k0

}
⊂ A and so µ

({
x : |fk(x) − f(x)| ≥

ρ, x ∈ X, ∀k ≥ k0
})

< ε.

Proposition 1.19. If {fk} L1-converges to f , then {fk} converges to f in mea-
sure.
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Proof. For ρ > 0, let Ek =
{
x ∈ X : |fk(x)− f(x)| ≥ ρ

}
. As in the proof of

Markov’s inequality,∫
|fk − f | du ≥

∫
Ek

|fk − f | dµ ≥ ρµ(Ek),

which implies

µ(Ek) ≤ 1

ρ

∫
|fk − f |dµ→ 0, k →∞.

Combining this proposition with Proposition 1.17, we arrive at the following
useful fact.

Proposition 1.20. If {fk} L1-converges to f , then it has a subsequence converg-
ing almost everywhere to f .

It is a good exercise to prove this fact directly.

Comments on Chapter 1. The study of an integration theory more flexible
and general than the Riemann integration led Lebsegue invent his integration
theory. In this theory one inevitably needs to define the “length” of a set in
[a, b]] and measure theory was conceived. Subsequently developments, especially
the mathematical formulation of probability theory by Kolmogorov, prompted
the separation of measure theory from the theory of integration (although they
are closely related). In this chapter we discuss how to define integration when-
ever a measure space is given. With differences only in some details, we largely
follow [R] in this chapter. It is amazing that an integration theory can be fully
developed based on the simple setting of a measure space. All results in this
chapter are of fundamental nature, and will be used again and again in the sub-
sequent development. Lebesgue’s monotone convergence theorem, Fatou’s lemma
and Lebesgue’s dominated convergence theorem are the corner stones for integra-
tion theory. You should understand them well. By the way, in these notes we
deduce Fatou’s lemma from Lebesgue’s monotone convergence theorem. Alter-
natively one can prove Fatou’s lemma first and then use it to deduce Lebesgue’s
monotone convergence theorem, see, for instance, [HS].

In [EG], a measurable function is called integrable if either
∫
f+ or

∫
f− is

finite, and it is called summable if both
∫
f+ and

∫
f− are finite. Thus summable

in [EG] means integrable in [R] as well as in these notes. Be careful of this
discrepancy.

We do not consider complex-valued functions in these notes. Extending re-
sults from real-valued to complex-valued functions are usually straightforward
and could be established on site when one really needs it.
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Finally, from now on a measurable function always means an extended real-
valued measurable function. A null set is always a measurable set with zero mea-
sure.
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