Math 6261	23-03-03
§ 3.1	Weak complexing.
• Let $\mu_n, \mu \in Prob(R)$. We say that $\mu_n \stackrel{\omega}{\rightarrow} \mu$ if	
• F $\mu_n \stackrel{\omega}{\rightarrow} \mu$ if $\mu_n \rightarrow \$	

\n
$$
\frac{Pf. \quad Let \quad \overline{R} = [-\infty, \infty] \quad \text{Then } \quad \text{Prob}(\overline{R}) \text{ is compact endowed with the}
$$
\n

\n\n Note that $P_{\text{rob}}(R)$ can be viewed as a subspanar of $P_{\text{rob}}(\overline{R})$. So $\int \text{or any } (H_n) \subset P_{\text{rob}}(R)$, $\overline{3}$ a subsequand (H_n) and\n

\n\n $\mu \in P_{\text{rob}}(\overline{R})$ such that\n

\n\n $\mu_n \xrightarrow{M} \mu$.\n

\n\n Let $F(z) = \mu (E \cdot \infty, z)$ for $z \in \mathbb{R}$, then\n

\n\n $\frac{F_m(z) \rightarrow F(z)}{F_m(z) \rightarrow F(z)}$ at the $p \in 2 \cdot f$ of $y \cdot f$.\n

\n\n where F_{n_k} is the DF corresponding to H_{n_k} . This proves $Helly-bwy'$.\n

\n\n Thus $\overline{B} = \frac{P_m(z) \rightarrow F(z)}{P_m}$ at the $p \in \mathbb{R}$, we have $\overline{B} = \frac{P_m(z) \rightarrow P_m}{P_m}$.\n

\n\n Given is the function F in $Helly-bray'$; $\overline{B} = \frac{P_m}{P_m}$ is possible, we have P_m .\n

\n\n Given $\overline{B} = \frac{P_m}{P_m}$ and $\overline{B} = \frac{P_m}{P_m}$.\n

\n\n For $\overline{B} = \frac{P_m}{P_m}$ and $\overline{B} = \frac{P_m}{P_m}$.\n

\n\n For $\overline{B} = \frac{P_m}{P_m}$ and $\overline{B} = \frac{P_m}{P_m}$.\n

\n\n For $\overline{B} = \frac{P_m}{P_m}$ and $\overline{B} = \frac{P_m}{P_m}$.\n

Similarly, a sequence
$$
(Fn)
$$
 of DFs on IR is said to be
tight if for every $8 > 0$, then exists k > 0 such that
 $F_n(k) - F_n(-k') > 1 - \epsilon$ for all n \in IN.
Lemma 6. Let (Fn) be a sequence of DFs on R.

lim 36. Let (Fn) be a sequence of DFs on R.

11. If $F_m \xrightarrow{M} F$ for some DFF, then (Fn) is tight.

12. If (Fn) is tight, then \exists a subsequence (F_m) and a DFF
such that
 $F_m \xrightarrow{M} F$.

12. If (Fn) is tight, then \exists a subsequence.

12. Let μ_n , μ be the problem, measures on R corresponding to Fr and F.

13. Let $8 > 0$. Then \exists ReN's such that
 $W(-Fn, k) > 1 - \epsilon$.

14. The $W_6 = C_b(n)$ such that
 $W_6 = \begin{cases} 4 & \text{if } |x| \le k \\ z_0 & \text{if } k \le k(\text{else}) \end{cases}$

14. Find $\frac{1}{k}$ is the k is the k .

15. Find $\frac{1}{k}$ is the k is the k .

16. Find $\frac{1}{k}$ is the k is the k .

17. Find $\frac{1}{k}$ is the k is the k .

18. Find $\frac{1}{k}$ is the k is the k .

19. Find $\frac{1}{k}$ is the k is the k .

10. Find $\frac{1}{k}$ is the k is the k is the k .

10. Find $\frac{1}{k}$ is the k is the k .

11. Find $\frac{1}{k}$ is the k is the k is the k is the k .
<

Then
$$
\mu_n (C-k-1, R+1) \ge \int h d\mu \rightarrow \int h d\mu \ge \mu(C+k) .
$$

\nIt follows that $3 N$ such that
\n $\mu_n (C-k-1, R+1) \ge \mu(C+k) .$ $\rightarrow 1-2$ (1)
\nfor all $n \ge N$.
\nNow pick $K > R+1$ such that
\n $\mu_n (C-K, K1) > 1-2$ for $n=1, ..., N$.
\nBy (1) this implies that $\mu_n (C-K, K1) > 1-2$ for all $n \in \mathbb{N}$,

8.3.2 Chareteriske functions (CF)
\n
$$
De\int. let X be a ru. The characteristic function of X is a map
$$
\n
$$
G : R \rightarrow C
$$
\n
$$
defind by
$$
\n
$$
G(s) = E(e^{i\theta X})
$$
\n
$$
= \int_{R} e^{i\theta x} d\mu(x) \qquad (µ is the law of X)
$$
\n
$$
= \int_{R} cos(\theta x) d\mu(x) + i \int_{R} sin(\theta x) d\mu(x)
$$
\nRemark: We often write $\oint_{X} \oint_{F} \oint_{\mu} for \oint$.
\nIn analysis, \oint is called **th** Fourier transform of μ .
\n
$$
I = \int_{\partial Y} cos(\theta x) d\mu(x) + i \int_{\partial Y} sin(\theta x) d\mu(x)
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\mu(x) + i \int_{\partial Y} sin(\theta x) d\mu(x)
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\mu(x) + i \int_{\partial Y} sin(\theta x) d\mu(x)
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\mu(x) + i \int_{\partial Y} sin(\theta x) d\mu(x)
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\mu(x)
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\theta
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\theta
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\theta
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\theta
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\theta
$$
\n
$$
= \int_{\partial Y} cos(\theta x) d\theta
$$
\n
$$
= \int_{\partial Y} (e^{i\theta x}) d\mu(x)
$$
\n
$$
= \int_{\partial Y} (e^{i\theta x}) d\mu(x)
$$

Pf. We only prove (D) in the care when $n=1$. First note that
\n $ e^{ib} - e^{ia} \leq b - a$ \n For all $a, b \in \mathbb{R}, a < b, a$ \n
\n $T_0 \sec it, we have$ \n $\left e^{ib} - e^{ia} \right = \left \frac{1}{i} \int_a^b e^{ix} dx \right $ \n $\leq \int_a^b 1 dx = b - a.$ \n
\n $N_{0w} \int_{0}^{a} e^{ix} \cdot \frac{1}{2} dx = \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx$ \n
\n $N_{0w} \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx = \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx$ \n
\n $N_{0w} \int x d\mu(x) = E(X) < \infty, \quad \text{by the DCT,}$ \n $V_{0w} \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx$ \n
\n $V_{0w} \int x d\mu(x) = E(X) < \infty, \quad \text{by the DCT,}$ \n $V_{0w} \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx$ \n
\n $V_{0w} \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx$ \n
\n $V_{0w} \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx$ \n
\n $V_{0w} \int_{0}^{a} e^{i(\theta + \epsilon)x} \cdot e^{i\theta x} dx$ \n
\n<math display="</td>

Below we list 3 key results about Cfs.
\n(i)
$$
Tf
$$
 X and Y are independent, then
\n $9x+y = 9x \cdot 9y$
\n(ii) F can be reconstructed from P.
\n(iii) Weak convergence of Dfs corresponds exactly to
\nconvergena of the corresponding Cfs.
\nThe proof of (i) is strongly
\nthe proof of (ii) is based on the following.
\n $\frac{1}{100} + \frac{1}{100} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{-i\theta} - e^{-i\theta}}{i\theta} \cdot \theta(\theta) d\theta$
\n $= \frac{1}{2} \mu \{a\} + \mu(a,b) + \frac{1}{2} \mu \{b\}$.

Cor 3.9. Let
$$
\mu, y \in Prob(R)
$$
. Suppose that $\mathcal{G}_{\mu} = \mathcal{G}_{y}$.
\nThen $\mu = y$.
\n
$$
\mathcal{P}_{1}^{\rho}.
$$
 By Thm 3.8, $-\mathcal{F}_{0}^{\rho}$ all $a < b$,
\n
$$
\pm \mu\{a\} + \mu(a,b) + \pm \mu\{b\} = \pm y\{a\} + y(a,b) + \pm y\{b\}
$$
.
\nSet
\n
$$
\mathcal{A}_{1} := \{ A \in \mathcal{G}(R): \mu(A) = y(A) \}
$$
\nand
\n
$$
\mathcal{G} := \{ (a, g_1: \mu\{a\} = \mu\{b\} = y\{a\} = b\} \},
$$
\n
$$
\mu(a, b_1 = y(a, b_1) \}.
$$
\nIt is readily checked that $\mathcal{A}_{1} \circ a \lambda$ -system, and \mathcal{G}^{ρ} is a
\n π -system and $\mathcal{G}^{\rho}(y) = \mathcal{G}(R)$.
\nBy Dynkin's π - λ thm, $\mathcal{A}_{1} \circ \mathcal{G}^{\rho}(y) = \mathcal{G}(R)$. Hence $\mu = y$.
\n \mathbb{E}_{1} .

Nextwe turn to the proof of the 3.8.

$$
\int_{2\pi}^{2\pi} \int_{-T}^{T} \frac{e^{-i\theta a} - e^{-i\theta b}}{i\theta} g(\theta) d\theta
$$
\n
$$
= \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-i\theta a} - e^{-i\theta b}}{i\theta} \cdot \left(\int_{\mathbb{R}} e^{i\theta x} d\mu(x) \right) d\theta
$$
\n
$$
= \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{i\theta a} - e^{-i\theta b}}{i\theta} \cdot \left(\int_{\mathbb{R}} e^{i\theta x} d\mu(x) \right) d\theta
$$
\nby $\frac{1}{2\pi} \int_{\mathbb{R}} \int_{-T}^{T} \frac{e^{i\theta(a-a)} - e^{i\theta(x+b)}}{i\theta} d\theta d\mu(x)$
\n
$$
\int_{\mathbb{R}} \int_{-\pi}^{T} \frac{e^{i\theta y} - e^{-i\theta y}}{i\theta} dx \quad \text{and} \quad \int_{\mathbb{R}} \int_{-\pi}^{T} \frac{1}{i\theta} d\theta d\mu(x) < \infty
$$
\n
$$
= \int_{-\pi}^{T} \frac{cos(\theta y) + i sin(\theta y)}{i\theta} d\theta
$$
\n
$$
= \int_{-\pi}^{T} \frac{sin(\theta y)}{i\theta} d\theta
$$
\n
$$
= 2 \cdot sign(8) \cdot \int_{0}^{T} \frac{sin(\theta y)}{i\theta} dx
$$
\n
$$
= 2 \cdot sign(9) \cdot S(T191),
$$

where
$$
S_{\frac{3}{2}n}(y) = \begin{cases} 1 & \text{if } y > 0 \\ 0 & \text{if } y = 0 \end{cases}
$$

\nand $S(z) = \int_{0}^{z} \frac{S \ln x}{x} dx$.
\nNotice the
\n
$$
\lim_{z \to +\infty} S(z) = \int_{0}^{+\infty} \frac{S \ln x}{x} dx = \frac{\pi}{2}
$$
 (*)
\nHence
\n
$$
\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\theta(x-\alpha)} - e^{i\theta(x+\alpha)} }{i\theta} d\theta
$$
\n
$$
= \frac{1}{\pi} \left[S_{\frac{3}{2}n}(x-\alpha) \cdot S(\pi|x-\alpha|) - S_{\frac{3}{2}n}(x-\alpha) \cdot S(\pi|x-\alpha|) \right]
$$
\n
$$
:= A(\pi, x)
$$
\n
$$
\Rightarrow \begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{if } x < a \text{ or } x > b \end{cases}
$$
\n
$$
\frac{a \cdot F \cdot b}{2} \qquad \begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{if } x < a \text{ or } x > b \end{cases}
$$
\n
$$
\frac{1}{2} \qquad \begin{cases} 1 & \text{if } x < a \text{ or } x > b \\ 0 & \text{if } x < a \text{ or } x > b \end{cases}
$$
\n
$$
\frac{1}{2} \qquad \begin{cases} A(\pi, x) & \text{if } x \text{ is uniformly} \end{cases}
$$
\n
$$
\text{Add in } T \text{ and } x
$$

By the DCT,
\n
$$
\lim_{T\to\infty}\frac{1}{2\pi}\int_{-T}^{T}\frac{e^{-i\theta a}-e^{-i\theta b}}{i\theta}\varphi(\theta) d\theta
$$
\n
$$
=\lim_{T\to\infty}\int_{\mathbb{R}}A(T,x) d\mu(x)
$$
\n
$$
=\int_{\mathbb{R}}\frac{1}{2}1_{\{a\}}(x)+1_{(a,b)}(x)+\frac{1}{2}1_{\{b\}}(x) d\mu(x)
$$
\n
$$
=\mu(a,b)+\frac{1}{2}\mu\{a\}+\frac{1}{2}\mu\{b\}.
$$
\nNext we prove (iii), i.e., Weake convergence of DFs
\ncorrespond to the convergence of the corresponding CFs.
\n
$$
\lim_{h\to\infty}3.10
$$
 (Levy's convergence Thm)
\nLet (Fn) be a sequence of DFs, and let φ be the CF of Fn.
\nSuppose that
\n
$$
\lim_{h\to\infty}\varphi_h(\theta) = 3.60
$$
 For all $\theta \in \mathbb{R}$,
\nand that φ is cts at 0.

Then
$$
g = \frac{\rho}{F} = \frac{\rho_{or}}{F}
$$
 some DF from R and

\n
$$
F_n \xrightarrow{w} F
$$
\nPr. We first assume that (F_n) is tight.

\nBy Helly-Bray's Thm, \exists a subsequence (F_{n_R}) and a DF F

\nsuch that $F_{n_R} \xrightarrow{w} F$.

\nIt follows that

\n
$$
\oint_{n_R}(0) \longrightarrow \oint_F(0) \qquad \forall \theta \in R,
$$
\nwhich implies that $g = \mathfrak{P}_F$.

\nNext we prove that $F_n \xrightarrow{w} F$. Suppose this is not true.

\nThen \exists a $p \dagger$ x φ continuously of F , S so and a subsequence (Fig. 1) such that $|F_{n_R}(x) - F(x)| > S$ for all R.

\nSince (F_n) is tight, choosing a subsquare of (F_{n_R}) if necessary, we may assume that

\n
$$
F_{n_R} \xrightarrow{w} \widetilde{F}
$$
\nfor some DF \widetilde{F} on R. Then

$$
\frac{G_{P_R}(\rho) \rightarrow \mathcal{P}_{\rho}(0), \forall \theta \in \mathbb{R},
$$
\n
$$
G_{\rho} = 3 = \mathcal{P}_{F}.
$$
\nBy Cor 3.9, $F = F$. Hence, $F_{P_R} \rightarrow F$. But
\nThis contradicts the fact that $|F_{P_{P_R}(x)} - F(x)| > 8$ for all k.
\nIn what follows we prove that (F_{P_R}) is tight. Notice that
\n $g_n(\rho) + g_n(\rho)$ is real, so $3(\rho) + 9(\rho) \text{ is also real.}$
\nLet $f \geq 0$. Since 9 is that of a and $9(\rho) = 1$, 3 So such that
\n
$$
\frac{1}{8} \int_{0}^{5} 2 - 9(\rho) - 3(-\theta) \text{ do } \langle \langle \langle \rangle \rangle
$$
\nBy the DCT, $3 \text{ N} \in \mathbb{N}$ such that
\n
$$
\frac{1}{8} \int_{0}^{5} 2 - \varphi_n(\rho) - \varphi_n(\rho) \text{ do } \langle \langle \langle \rangle \rangle
$$
\nThat is,
\n
$$
\frac{1}{8} \int_{0}^{5} 2 - e^{i(\rho x)} - e^{-i(\rho x)} \text{ d} \mu_n \text{ d} \rho \langle \langle \langle \rangle \rangle
$$
\nBy Fubini,
\n
$$
\int_{\mathbb{R}} \frac{1}{8} \int_{0}^{5} \frac{1}{8} \rho^{2} - e^{-i(\rho x)} \text{ d} \rho_n \text{ d} \rho \langle \langle \rangle \langle \langle \rangle \rangle
$$

Notice that
$$
\frac{1}{8} \int_{0}^{5} 2 - e^{i\theta x} - e^{-i\theta x} d\theta
$$

\n
$$
= \frac{1}{8} \int_{0}^{5} (2 - 2 cos \theta x) d\theta
$$

\n
$$
= 2 - \frac{1}{5} \cdot \frac{2 sin \theta x}{\alpha} |_{0}^{5}
$$

\n
$$
= 2(1 - \frac{sin \theta x}{\theta x}) \ge 1 \text{ provided that } |\theta x| > 2.
$$

\nHence
\n
$$
\int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \int_{\mathbb{R}} \frac{1}{5} \int_{0}^{5} 2 - e^{i\theta x} - e^{i\theta x} d\mu_{n} \text{ for } \theta
$$

\n
$$
\int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \int_{\mathbb{R}} \frac{1}{5} \int_{0}^{5} 2 - e^{i\theta x} - e^{i\theta x} d\mu_{n} \text{ for } \theta
$$

\n
$$
\int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \varepsilon
$$

\n
$$
\int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \varepsilon
$$

\n
$$
\int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \varepsilon
$$

\n
$$
\int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \varepsilon
$$

\n
$$
\int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \int_{\{x: |x| > \frac{3}{5}\}} 1 d\mu_{n} \le \varepsilon
$$

\n
$$
\int_{\{x: |x| > \frac{3}{5}\}}
$$