
Discrete Fourier Transform:
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Remark:
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Why is DFT useful in imaging:
DFT of convolution :
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i DFT of convolution can be reduced to simple multiplication !

Recall : Shift - invariant  image transformation ,
= 2 D convolution .

i . Easy computation / manipulation of shift - invariant transf .
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2 . Average value  of image
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3. DFT of a rotated image

Consider  a Nx N image g .
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4. DFT of  a shifted image
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Mathematics of JPEG
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Make the extension as  a reflection about ( o
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.

Done by shifting the  image by ( k
,

k )

After shifting
tztl - 3)

Is +  tz )

I:') .

tz

...
¥÷¥¥¥÷

e



After some messy simplication ,
we can get :



Definition: (Even symmetric discrete cosine transform [EDCT])

Remark : . Smart  idea to get  a decomposition Consisting only of cosine function

( by reflection and shifting ! )

• Can be formulated in matrix form

• Again ,
it  is a separable image transformation .



Also involving cosine

functions only !

elementary images

under EDCT !

This is what  JPEG

does ! !



Note :

( Spatial domain ) I * g ( Linear filtering :

Linear combination  of
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( Frequency domain ) MN I O g
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( Modifying the

- Fourier coefficients
pixel - wise by multiplication )

multiplication



Image enhancement in the frequency domain:

High/Low frequency components of 

Goal : I
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Observation:
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Least frequent Medium
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