
MMAT5390: Mathematical Image Processing
Chapter 1: Basic concepts in Digital Image Processing

Mathematical imaging aims to develop mathematical models to process a digital image. The main
tasks include enhancing the visual quality of a corrupted image and extracting important informa-
tion from an image for the purpose of image understanding. Most mathematical models are done
by transforming one image into another or by decomposing an image into meaningful components.
In this chapter, we will explain some basic concepts in mathematical image processing. The defini-
tion of a digital image will firstly be described. The basic idea of image transformation and image
decomposition will then be described in details. Finally, various measures to quantify the similarity
between images will be explained.

1 Definition of digital images
A digital image captures the brightness at each pixel and represented by a numerical value, called
the pixel value. Mathematically, a digital image can be understood as a matrix, which is array of
numbers recording the pixel values at each pixels.

Definition 1.1. A digital image of width m pixels and height n pixels can be represented by a
matrix I ∈ Rn×m. Mathematically, I belongs to the subset I of n×m matrices:

I = {I ∈ Rn×m : 0 ≤ I(i, j) ≤ R for 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Typical values of the upper bound R of pixel values include 1 for greyscale images, and 255 for
Red-Green-Blue (RGB) or Cyan-Magenta-Yellow-blacK (CMYK) images.

The main idea of mathematical imaging can be described as follows:

1. Given a noisy/distorted image f ∈ I, find a suitable image transformation T : I → I such
that g := T (f) is the restored (good) image.

2. Given a distorted image g ∈ I. We assume g is distorted by an image transformation
T : I → I and corrupted by some noise n. Mathematically, we can write:

g = T (f) + n,

where f is the unknown good image. Given g and T , our goal is to find the good image f
and n. This kind of problems is called the inverse problem. Mathematical imaging is often
considered as an inverse problem.

2 Basic idea of image transformation
We will first focus on the linear image transformation O. For simplicity, we will assume images in
I consist of square images of size N . In other words, we assume m = n = N .

Definition 2.1. A image transformation O : I → I is linear if it satisfies:

O(af + bg) = aO(f) + bO(g)

for all f, g ∈ I and a, b ∈ R.

Take f ∈ I. Let

f =


f(1, 1) f(1, 2) · · · f(1, N)
f(2, 1) f(2, 2) · · · f(2, N)

...
...

. . .
...

f(N, 1) f(N, 2) · · · f(N,N)

 =

N∑
i=1

N∑
j=1



0 · · · 0 · · · 0
...

...
...

0 · · · f(i, j) · · · 0
...

...
...

0 · · · 0 · · · 0


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with f(i, j) at i-th row and j-th column.
Let g = O(f). Since O is linear,

g(α, β) =

N∑
x=1

N∑
y=1

f(x, y)h(x, α, y, β)

where

h(x, α, y, β) =

O




0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0






α,β

with 1 at x-th row and y-th column.

Remark. h(x, α, y, β) determines how much the input value at (x, y) influences the output value
at (α, β).

Definition 2.2. h(x, α, y, β) is usually called the point spread function (PSF).

In mathematical imaging, two types of linear image transformations are particularly useful. They
are, namely, the separable and shift-invariant linear image transformations.

Definition 2.3. The PSF h(x, α, y, β) is called shift-invariant if there exists a function h̃ such
that

h(x, α, y, β) = h̃(α− x, β − y)

for all 1 ≤ x, y, α, β ≤ N.

Definition 2.4. The PSF is called separable if there exist functions hc and hr such that

h(x, α, y, β) ≡ hc(x, α)hr(y, β)

for all 1 ≤ x, y, α, β ≤ N .

Some interesting properties related to shift-invariant and separable linear image transformation can
be observed. To begin with, a shift-invariant linear image transformation is related to something
called the convolution.

Definition 2.5. Consider two digital images f ∈ I and g ∈ I. Assume that they are periodically
extended, that is,

f(x, y) = f(x+ pN, y + qN), g(x, y) = g(x+ pN, y + qN)

where p and q are any integers. The convolution f ∗ g of two images f ∈ I and g ∈ I is defined
as

f ∗ g(α, β) =
N∑
x=1

N∑
y=1

f(x, y)g(α− x, β − y).

Obviously, if the PSF h of a linear image transformation O is shift-invariant, then the image
transformation is a convolution because

O(f)(α, β) =
N∑
x=1

N∑
y=1

f(x, y)h(α− x, β − y).

Remark 1.6.
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• If PSF h is separable, then

O(f)(α, β) =
N∑
x=1

hc(x, α)

N∑
y=1

f(x, y)hr(y, β),

which consists of two one-dimensional linear transformations.

• If PSF h is both separable and shift-invariant, then

O(f)(α, β) =
N∑
x=1

hc(α− x)
N∑
y=1

f(x, y)hr(β − y),

which consist of two one-dimensional convolutions.

Conventionally, the linear image transformation can be represented by a big matrix H. In other
words, the linear image transformation can be considered as a multiplication of the image by a big
matrix H.
Note that:

g(α, β) = f(1, 1)h(1, α, 1, β) + f(2, 1)h(2, α, 1, β) + · · ·+ f(N, 1)h(N,α, 1, β)

+ f(1, 2)h(1, α, 2, β) + · · ·+ f(N, 2)h(N,α, 2, β) + · · ·
+ f(1, N)h(1, α,N, β) + · · ·+ f(N,N)h(N,α,N, β)

Rewrite g(α, β) = ~hTαβ · ~fT where

~hTαβ ≡ [h(1, α, 1, β), · · · , h(N,α, 1, β), h(1, α, 2, β), · · · , h(N,α, 2, β),
· · · , h(N,α,N, β)]

~fT ≡ [f(1, 1), · · · , f(N, 1), f(1, 2), · · · , f(N, 2), · · · , f(N,N)]

Let ~gT ≡ [g(1, 1), · · · , g(N, 1), g(1, 2), · · · , g(N, 2), · · · , g(N,N)], then ~g = H ~f where

H =



 x→

α ↓
(
y = 1
β = 1

)   x→

α ↓
(
y = 2
β = 1

)  · · ·

 x→

α ↓
(
y = N
β = 1

)  x→

α ↓
(
y = 1
β = 2

)   x→

α ↓
(
y = 2
β = 2

)  · · ·

 x→

α ↓
(
y = N
β = 2

) 
...

...
... x→

α ↓
(

y = 1
β = N

)   x→

α ↓
(

y = 2
β = N

)  · · ·

 x→

α ↓
(
y = N
β = N

) 


Definition 2.6. H is called the transformation matrix of O.

Example 2.7. A linear operator is such that it replaces the value of each pixel by the average of
its four nearest neighbours. Assume the image is repeated in all directions. Apply this operator
O to a 3× 3 image. Find the transformation matrix corresponding to O.

Solution. The 3× 3 image looks like

f33 f31 f32 f33 f31
f13 f11 f12 f13 f11
f23 f21 f22 f23 f21
f33 f31 f32 f33 f31
f13 f11 f12 f13 f11

∴ g11 =
f21 + f31 + f12 + f13

4
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g21 =
f11 + f31 + f22 + f23

4
,

and so on.
By a simple checking, we observe that the transformation matrix H can be written as

H =



0 1/4 1/4 1/4 0 0 1/4 0 0
1/4 0 1/4 0 1/4 0 0 1/4 0
1/4 1/4 0 0 0 1/4 0 0 1/4
1/4 0 0 0 1/4 1/4 1/4 0 0
0 1/4 0 1/4 0 1/4 0 1/4 0
0 0 1/4 1/4 1/4 0 0 0 1/4

1/4 0 0 1/4 0 0 0 1/4 1/4
0 1/4 0 0 1/4 0 1/4 0 1/4
0 0 1/4 0 0 1/4 1/4 1/4 0


.

Example 2.8. Consider an image transformation on a 2× 2 image. Suppose the matrix represen-
tation of the image transformation is given by:

H =


2 0 1 0
4 2 2 1
3 0 4 0
6 3 8 4

 .

Prove that the image transformation is separable. Find g1 and g2 such that:

h(x, α, y, β) = g1(x, α)g2(y, β).

Solution. Recall that:

H =


x→

α ↓
(
y = 1
β = 1

) x→

α ↓
(
y = 2
β = 1

)
x→

α ↓
(
y = 1
β = 2

) x→

α ↓
(
y = 2
β = 2

)


If H is separable, then h(x, α, y, β) = g1(x, α)g2(y, β) for some g1 and g2. Then,

H =


h(1, 1, 1, 1) h(2, 1, 1, 1) h(1, 1, 2, 1) h(2, 1, 2, 1)
h(1, 2, 1, 1) h(2, 2, 1, 1) h(1, 2, 2, 1) h(2, 2, 2, 1)
h(1, 1, 1, 2) h(2, 1, 1, 2) h(1, 1, 2, 2) h(2, 1, 2, 2)
h(1, 2, 1, 2) h(2, 2, 1, 2) h(1, 2, 2, 1) h(2, 2, 2, 2)

 .

We can easily check that

H =

(
g2(1, 1)G1 g2(2, 1)G1

g2(1, 2)G1 g2(2, 2)G1

)
,

where
G1 =

(
g1(1, 1) g1(2, 1)
g1(1, 2) g1(2, 2)

)
.

In our case,

H =

(
2G1 1G1

3G1 4G1

)
,

where
G =

(
1 0
2 1

)
.

Thus, g1(1, 1) = 1, g1(2, 1) = 0, g1(1, 2) = 2 and g1(2, 2) = 1. Similarly, g2(1, 1) = 2, g2(2, 1) = 1,
g2(1, 2) = 3 and g2(2, 2) = 4.
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Example 2.9. Suppose H ∈ R4×4 is applied to a 2× 2 image. Let

H =


1 1 1 2
2 3 2 4
2 1 1 1
6 1 1 1

 .

Is H shift-invariant?

Solution. We can easily check that h(1, 2, 1, 1) = 2 and h(1, 2, 2, 2) = 1. Hence, H is not shift-
invariant.

3 Properties of shift-invariant/separable image transforma-
tion

Properties of shift-invariant image transformation

Definition 3.1. The circulant matrix V := circ(v) associated to the vector v = (v0, v1, . . . , vn−1)
T ∈

Cn is an n×n matrix whose columns are given by iterations of shift-operator T acting on v, where
T : Cn → Cn is given by:

T (


v0
v1
...

vn−1

) =


vn−1
v0
...

vn−2


Hence, the k-th column of V is given by T k−1(v) (k = 1, 2, . . . , n). In other words,

V =


v0 vn−1 · · · v1
v1 v0 · · · v2
...

... · · ·
...

vn−1 vn−2 · · · v0

 .

Definition 3.2. A matrix V is called block-circulant if it is of the following form:

V =


H0 Hn−1 · · · H1

H1 H0 · · · H2

...
... · · ·

...
Hn−1 Hn−2 · · · H0


where each Hi is a circulant matrix (i = 0, 1, 2, . . . , n− 1).

Theorem 3.3. Let H be the transformation matrix of a shift-invariant linear image transformation
on MN×N (R), with hs being N -periodic in both arguments. Suppose

H =

A11 · · · A1N

... · · ·
...

AN1 · · · ANN


where each Aij is an N ×N block matrix. Then, each Aij is a circulant matrix.

Proof. Note that

Aij =

 x→

α ↓
(
y = j
β = i

)  .

Thus,

Aij =


h(1, 1, j, i) h(2, 1, j, i) · · · h(N, 1, j, i)
h(1, 2, j, i) h(2, 2, j, i) · · · h(N, 2, j, i)

...
...

h(1, N, j, i) h(2, N, j, i) · · · h(N,N, j, i)

 .
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By assumption, we have h(x, α, y, β) = hs(α−x, β−y) with hs being N -periodic in both arguments.
We conclude that

Aij =


hs(0, i− j) hs(−1, i− j) · · · hs(1−N, i− j)
hs(1, i− j) hs(0, i− j) · · · hs(2−N, i− j)

...
...

hs(N − 1, i− j) hs(N − 2, i− j) · · · hs(0, i− j)



=


hs(0, i− j) hs(N − 1, i− j) · · · hs(1, i− j)
hs(1, i− j) hs(0, i− j) · · · hs(2, i− j)

...
...

hs(N − 1, i− j) hs(N − 2, i− j) · · · hs(0, i− j)


which is circulant.

Theorem 3.4. Under the same setup as in Theorem 3.3, H is block-circulant.

Proof. Exercise.

For more details, see Appendix.
Properties of separable image transformation

Recall: Separable h means h(x, α, y, β) = hc(x, α)hr(y, β). Then, if g = Hf , we have

g(α, β) =

N∑
x=1

hc(x, α)

N∑
y=1

f(x, y)hr(y, β)︸ ︷︷ ︸
fhr≡s

(Here, we consider f and hr as matrices). Let s ≡ fhr. Then:

g(α, β) =

N∑
x=1

hc(x, α)s(x, β) =

N∑
x=1

hTc (α, x)s(x, β).

∴ g = hTc s = hTc fhr

Definition 3.5. Suppose A and B are two matrices. The Kronecker product A⊗B is defined
as:

A⊗B =


a11B · · · a1NB
a21B · · · a2NB
...

...
aN1B · · · aNNB

 ,

where aij is the i-th row, j-th column entry of A.

Theorem 3.6. Consider a separable linear image transformation, whose PSF is given by: h(x, α, y, β) =
hc(x, α)hr(y, β). The transformation matrix H is given by:

H = hTr ⊗ hTc .

Proof. Exercise.

4 Stacking operator
In image processing, a very important operator is called the stacking operator, which converts a
2D image to a column vector.
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Definition 4.1. Define

Vn =



0
...
0
1
0
...
0


← row n and Nn ≡

 0
IN
0

 ← (n− 1)N ×N zero matrix
← N ×N identity matrix

← (N − n)N ×N zero matrix

Let f ∈ I (N ×N image). We define the stacking operator on f as:

Sf ≡ ~f ≡
N∑
n=1

NnfVn.

Remark. We can check that:

1. Sf ∈ RN2×1;

2. The 1st column of f forms the first N elements of Sf ,
the 2nd column of f forms the second N elements of Sf , etc.

3. S is important for actual MATLAB implementation.

Theorem 4.2. S is linear. Also f =
N∑
n=1

NT
n
~fV Tn .

The proof is left as exercise.

5 Similarity measure between images
In image processing, we often need to approximate an image by another image with better prop-
erties. For example, the main idea of image denoising (removing artifacts/noises from image) is to
approximate an input noisy image by a ‘smoother’ image. In order to approximate an image, it is
necessary to have a measure to quantify the similarity between different images.
Recall that a digital image can be considered as a matrix. To measure the similarity between two
images, it is equivalent to defining a matrix norm. We first recall the definition of a vector norm.

Definition 5.1. A vector norm is a function ‖ · ‖ : Rn → R satisfying the following conditions:

1. ‖x‖ ≥ 0, ‖x‖ = 0 only if x = 0;

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality);

3. ‖αx‖ = |α|‖x‖;

for all x,y ∈ Rn and α ∈ R.

The most commonly used vector norms are the vector p-norms.

Definition 5.2. Let v = (v1, v2, . . . , vn)
T ∈ Rn, and let p ≥ 1. The vector p-norm of v, denoted

by ‖v‖p, is given by

‖v‖p :=

(
n∑
i=1

|vi|p
) 1

p

.

The limiting case for p→∞ is given by

‖v‖∞ := lim
p→∞

‖v‖p = max
1≤i≤n

|vi|,

and is also called the supremum norm of v.

One can check with Definition 5.1 to verify that the p-norms are indeed vector norms.
Having defined vector norms, a matrix norm can be induced from each vector norm.
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Definition 5.3. Let A ∈ Rn×m and ‖ · ‖ : Rn → R be a vector norm. We define the induced
matrix norm ‖A‖ to be the smallest C ∈ R such that

‖Ax‖ ≤ C‖x‖ for all x ∈ Rm,

or equivalently,

‖A‖ = sup
x∈Rm,x 6=0

‖Ax‖
‖x‖

= sup
x∈Rm,‖x‖=1

‖Ax‖.

However, not every matrix norm can be induced from a vector norm. In fact, matrix norms are
defined in a similar manner to vector norms.

Definition 5.4. Amatrix norm is a function ‖·‖ : Rn×m → R satisfying the following conditions:

1. ‖A‖ ≥ 0, ‖A‖ = 0 only if A = 0;

2. ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality);

3. ‖αA‖ = |α|‖A‖;

for all A,B ∈ Rn×m and α ∈ R.

For example, having defined the stacking operator and vector p-norms, another set of matrix
p-norms can be defined as the vector p-norms of the stacked versions of matrices.

Definition 5.5. Let A ∈ Rn×m, and let p ≥ 1. The entrywise matrix p-norm of A, denoted
by ‖A‖p,e, is given by

‖A‖p,e := ‖SA‖p =

 n∑
i=1

m∑
j=1

|A(i, j)|p
 1

p

.

‖A‖2,e is also called the Frobenius norm (F-norm) of A; it is also denoted by ‖A‖F . Let aj be the
j-th column of A. We have

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

A(i, j)2 =

√√√√ m∑
j=1

‖aj‖22 =
√

tr(ATA),

where tr(·) is the trace of the matrix in the argument.
The limiting case for p→∞ is given by

‖A‖∞ := lim
p→∞

‖A‖p = max
1≤i≤n
1≤j≤m

|A(i, j)|,

and is also called the entrywise supremum norm of A.

Remark. In literature, the notations ‖A‖p and ‖A‖∞ are used for both the induced norms and the
entrywise norms. Unless otherwise specified, in the notes we reserve these notations for induced
norms, and denote the entrywise norms by ‖A‖p,e and ‖A‖∞,e.

One may check with Definition 5.4 to verify that all induced norms and entrywise norms are indeed
matrix norms.

Theorem 5.6. The induced matrix 2-norm and the F-norm are invariant under multiplication by
unitary matrices (a unitary matrix U satisfies U∗U = UU∗ = I; its column vectors are orthonormal
and its row vectors are also orthonormal), i.e. for any A ∈ Rn×m and unitary U ∈ Rn×n, we have
‖UA‖2 = ‖A‖2 and ‖UA‖F = ‖A‖F .

Proof. Since for any x ∈ Rm,

‖UAx‖22 = (UAx)T (UAx) = xTATUTUAx = xTATAx = ‖Ax‖22,

we have
‖UA‖2 = max

‖x‖2=1
‖UAx‖2 = max

‖x‖2=1
‖Ax‖2 = ‖A‖2.

Furthermore,

‖UA‖F =
√

tr
(
(UA)T (UA)

)
=
√

tr(ATUTUA) =
√

tr(ATA) = ‖A‖F .
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With matrix norms defined, we can measure the dissimilarity between two matrices (or images) by
computing the norms of their difference matrix. Among the entrywise p-norms, the 1-norm and
2-norm are the most frequently used dissimilarity measures. The following figures demonstrate
their different emphases.

Figure 1: The images on the left and on the right are equally similar to the image in the middle
in terms of the entrywise 1-norm. On the other hand, the image on the right is significant less
similar to the image in the middle in terms of the entrywise 2-norm than the image on the left.

Figure 2: The images on the left and on the right are equally similar to the image in the middle
in terms of the entrywise 2-norm. On the other hand, the image on the right is significant less
similar to the image in the middle in terms of the entrywise 1-norm than the image on the left.

As seen from the figures, the 1-norm is more sensitive to widespread deviation in large regions,
whereas the 2-norm is more sensitive to extreme pixel value differences, even if they are restricted
to small regions. This trend goes on across different values of p ≥ 1.

Exercises
1. In Example 2.7, what are h(2, 3, 2, 1) and h(1, 2, 2, 3)?

2. Consider an image transformation on a 2 × 2 image. Suppose the matrix representation of
the image transformation is given by:

H =


8 12 16 24
16 4 32 8
6 9 4 6
12 3 8 2

 .

Is the image transformation separable? Please explain in details. If yes, find g1 and g2 such
that:

h(x, α, y, β) = g1(x, α)g2(y, β).

3. Suppose H ∈M4×4 is applied to a 2× 2 image. Let

H =


5 3 2 8
3 2 1 1
3 1 1 1
2 2 5 3

 .

Is H shift-invariant? Please explain your answer with details.

4. Prove Theorem 3.4.
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5. Prove Theorem 3.6.

6. Let f = (f(m,n))−2≤m,n≤2 be a 5 × 5 image. Consider a filter H = (h(m,n))−2≤m,n≤2,
which is another 5 × 5 image. Note that the indices are taken from −2 to 2. Suppose
H = (a1, a2, a3, a4, a5)

T (b1, b2, b3, b4, b5).

(a) Define the discrete convolution H ∗ f .
(b) Show that H ∗ f = H1 ∗ (H2 ∗ f), where

H1 =


0 0 a1 0 0
0 0 a2 0 0
0 0 a3 0 0
0 0 a4 0 0
0 0 a5 0 0

 and H2 =


0 0 0 0 0
0 0 0 0 0
b1 b2 b3 b4 b5
0 0 0 0 0
0 0 0 0 0


Hence, H ∗ f can be computed by a sequence of 1D convolutions.

7. Let H be a (2N + 1) × (2N + 1) matrix. Let I be the collection of (2N + 1) × (2N + 1)
images. Assume the indices are taken from −N to N . Define: O(H) : I → I by:

O(I) = I ∗H

where I ∗H refers to the discrete convolution.

(a) Give the definition of discrete convolution. Argue that O is a linear operator and shift-
invariant.

(b) Show that I ∗ (H1 ∗ H2) = (I ∗ H1) ∗ H2, where H1 and H2 are (2N + 1) × (2N + 1)
matrices.

(c) Show that I ∗H = H ∗ I.

8. For an N ×N image g of real entries, let g = UfV T , where U, V, f are N ×N real matrices.

(a) Show that

g =

N∑
i=1

N∑
j=1

fij~ui~v
T
j

where

U =

 ~u1 ~u2 · · · ~uN

 and V T =


~vT1
~vT2
...
~vTN


(b) (Amended: Oct 18) Show that if f is diagonal, then the trace of g,

tr(g) =
N∑
k=1

gkk =

N∑
k=1

N∑
l=1

flluklvkl.

9. Prove that S is linear and f =
N∑
n=1

NT
n
~fV Tn .

10. For the following point-spread functions, determine whether they are (i) shift-invariant; (ii)
separable. Prove your answer or provide a counterexample.

(a) h(x, α, y, β) =

{
|(α− x)(β − y)| if |α− x| ≤ 2, |β − y| ≤ 3

0 otherwise

(b) h(x, α, y, β) =
√
(α− x)4 + (β − y)3

(c) h(x, α, y, β) =

{√
17− (α− x)3 + (β − y)2 if |α− x| ≤ 2, |β − y| ≤ 3

0 otherwise
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11. Let H1 =


4 5 7 3
3 4 5 7
7 3 4 5
5 7 3 4

 and H2 =



0 3 2 1 4 5 2 8 9
2 0 3 5 1 4 9 2 8
3 2 0 4 5 1 8 9 2
2 8 9 0 3 2 1 4 5
9 2 8 2 0 3 5 1 4
8 9 2 3 2 0 4 5 1
1 4 5 2 8 9 0 3 2
5 1 4 9 2 8 2 0 3
4 5 1 8 9 2 3 2 0


.

Discuss whether H1 and H2 represent shift-invariant linear transformations (with hs being
N -periodic in both arguments) on N × N square images. Please explain your answer with
details.

12. Let H1 =


4 3 8 6
2 1 4 2
12 9 16 12
6 3 8 4

 and H2 =


1 2 1 2
3 4 3 4
5 6 5 6
7 8 7 8

.

Discuss whether H1 and H2 represent separable linear transformations on square images.
Please explain your answer with details.

13. Let f and g be two m× n images. Assume that f and g are periodically extended.

(a) Show that f ∗ g = g ∗ f , where ∗ denotes the convolution.

(b) Let f =

(
1 2
3 4

)
and g =

(
0 3
2 5

)
. Compute f ∗ g.

14. Prove that ‖·‖p is a vector norm.

15. Show that all induced norms and entrywise norms are matrix norms.

16. (a) Let A =

8 9 2
9 6 5
1 0 9

 and let B =

1 1 1
1 1 1
1 1 1

.

i. What is the value of α that minimizes ‖A− αB‖F ?
ii. What is the value of α that minimizes ‖A− αB‖1,e?

(b) Let C =

(
7 7 0 9
3 0 8 0

)
and let D =

(
1 1 1 1
1 1 1 1

)
.

i. What is the value of α that minimizes ‖C − αD‖F ?
ii. What is the range of values of α that minimizes ‖C − αD‖1,e?

(c) Which central measures (mean, median, mode) of the pixel values are the values of
α that respectively minimize the Frobenius norm difference and the entrywise 1-norm
difference?

17. Consider the following two families of transformations:

• O1: adding every pixel value by the same number,

e.g.
(
2 3
5 7

)
7→
(
1 2
4 6

)
by adding −1 to each pixel;

• O2: scaling the difference of every entry with the mean pixel value, e.g.
(
8 0
2 6

)
7→(

6 2
3 5

)
by halving the difference of every pixel value with the mean pixel value, which

is 4.

Let A =

(
7 3
1 5

)
and let B =

(
2 4
6 8

)
.

(a) Among all A1 that can be obtained by transforming A via O1, what is the minimum
value of ‖A1 −B‖F ?
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(b) Among all A2 that can be obtained by transforming A via O2, what is the minimum
value of ‖A2 −B‖F ?

(c) Among all A3 that can be obtained by transforming A via O1 and/or O2, what is the
minimum value of ‖A3 −B‖F ?

Remark. O1 and O2 correspond loosely to changing image brightness and contrast respec-
tively.

Appendix
Definition 3.7. A matrix A ∈ MN×N (R) is said to be Toeplitz or diagonal-constant if aij =
ai+k,j+k for any i, j, k ∈ Z such that 1 ≤ i, j, i+ k, j + k ≤ N . In other words,

A =


d0 d−1 d−2 · · · d1−N
d1 d0 d−1 · · · d2−N
d2 d1 d0 · · · d3−N
...

...
...

. . .
...

dN−1 dN−2 dN−3 · · · d0


with {dk : k = 1 −N, 2 −N, . . . , N − 1} ⊆ R; the subscripts correspond to the values of i − j on
the particular (super-/sub-)diagonals.

Definition 3.8. A matrix A ∈ MN2×N2(R) is said to be block-Toeplitz if it is of the following
form:

A =


A0 A−1 A−2 · · · A1−N
A1 A0 A−1 · · · A2−N
A2 A1 A0 · · · A3−N
...

...
...

. . .
...

AN−1 AN−2 AN−3 · · · A0

 ,

where each block Ak is a N ×N Toeplitz matrix.

Hence circulant matrices are Toeplitz, and block-circulant matrices are block-Toeplitz.
The proofs of Theorems 3.3 and 3.4 actually establish that linear transformations on square im-
ages with shift-invariant PSFs have block-Toeplitz transformation matrices. To establish that the
matrices are block-circulant, it is necessary to assume that hs is N -periodic in both arguments.
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