Homework 5 for MATH5070 Topology of Manifolds Due Wednesday, Nov. 16

1. Denote by $(x_1, \dots, x_n, y_1, \dots, y_n)$ the coordinate functions on \mathbb{R}^{2n} . Let

$$
\omega = \sum_{i=1}^{n} dx_i \wedge dy_i.
$$

- (i) What is $d\omega$?
- (ii) What is $\omega^n = \omega \wedge \cdots \wedge \omega$ (wedge *n* times)?
- (iii) Let $X = \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x_1} + \cdots + \frac{\partial}{\partial x_n}$ $\frac{\partial}{\partial x_k}$ where $k \leq n$. What is $\iota_X \omega$?
- (iv) Let $\iota : \mathbb{R}^{2n-2} \hookrightarrow \mathbb{R}^{2n}$ be the embedded submanifold of \mathbb{R}^{2n} defined by $x_n = y_n = 0$. What is $\iota^* \omega$?
- (v) Let $\iota : \mathbb{R}^n \hookrightarrow \mathbb{R}^{2n}$ be the embedded submanifold of \mathbb{R}^{2n} defined by $y_1 = \cdots = y_n = 0$. What is $\iota^* \omega$?
- (vi) Let $\iota : \mathbb{T}^n \hookrightarrow \mathbb{R}^{2n}$ be the embedded submanifold of \mathbb{R}^{2n} defined by $x_i^2 + y_i^2 = 1$ for $1 \le i \le n$. What is $\iota^* \omega$?
- 2. Recall that S^n is a smooth submanifold of \mathbb{R}^{n+1} . For each $p \in S^n$, one can think of the tangent space T_pS^n as the plane in \mathbb{R}^{n+1} that contains p and tangents to S^n . For each $a > 0$, denote $S^n(a)$ the sphere in \mathbb{R}^{n+1} of radius a, centered at the origin.
	- (i) Assume X is a smooth vector field on $Sⁿ$ so that $||X_p|| = 1$ for all $p \in Sⁿ$. Consider the map

$$
f_t: S^n \to \mathbb{R}^{n+1}, \ \ p \mapsto p + tX_p.
$$

Prove that Image(f_t) $\subset S^n$ (√ $(\sqrt{1+t^2})$. In what follows we regard f_t as a map from S^n to $S^n(\sqrt{1+t^2})$.

- (ii) Show that f_t is an orientation-preserving diffeomorphism for sufficiently small t .
- (iii) Let ω be an *n*-form on \mathbb{R}^{n+1} defined as

$$
\omega = \sum_{i=1}^{n+1} (-1)^{i-1} x_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_{n+1}.
$$

Use (ii) to show that the function $I(t) = \int_{S^n(\sqrt{1+t^2})} \omega$ is a polynomial of t.

- (iv) Apply Stokes' theorem to show that $I(t)$ is a polynomial of t if and only if n is odd.
- (v) Conclude that $Sⁿ$ admits a nowhere-vanishing vector field if and only if *n* is odd; and there is no Lie group structure on S^{2k} .

3. In 3-dimensional vector calculus, the divergence theorem claims that for a region V with boundary S ,

$$
\iiint_V (\nabla \cdot \vec{F}) dV = \iint_S \vec{F} \cdot \hat{n} dS;
$$

and the *Stokes' theorem* claims that for a surface S with boundary C ,

$$
\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, dS = \oint_{C} \vec{F} \cdot d\vec{r}.
$$

Derive the two theorems as special cases of the Stokes' theorem for differential forms.

4. Suppose $f \in C^{\infty}(M)$, $\omega \in \Omega^k(M)$, and X, X_i 's are smooth vector fields on M. Prove:

(i)
$$
\mathcal{L}_{fX}\omega = f\mathcal{L}_X\omega + df \wedge \iota_X\omega
$$

(ii)
$$
\iota_{[X_1,X_2]}\omega=\mathcal{L}_{X_1}\iota_{X_2}\omega-\iota_{X_2}\mathcal{L}_{X_1}\omega.
$$

- (iii) $\mathcal{L}_{[X_1,X_2]}\omega = \mathcal{L}_{X_1}\mathcal{L}_{X_2}\omega \mathcal{L}_{X_2}\mathcal{L}_{X_1}\omega.$
- (iv) $(\mathcal{L}_X \omega)(X_1, \cdots, X_k) = \mathcal{L}_X(\omega(X_1, \cdots, X_k)) \sum_{i=1}^k \omega(X_1, \cdots, \mathcal{L}_X X_i, \cdots, X_k).$

$$
-END-
$$