Homework 2 for MATH5070 Topology of Manifolds Due Wednesday, Oct. 5

1. Let \mathcal{M}_n be the space of all $n \times n$ real matrices and Sym_n be the space of all $n \times n$ symmetric matrics. Consider the map

 $f: \mathcal{M}_n \to \text{Sym}_n, A \mapsto f(A) = A^t A.$

- (i) Since both \mathcal{M}_n and Sym_n are linear spaces, we can identify $T_A\mathcal{M}_n$ with \mathcal{M}_n and $T_{f(A)}Sym_n$ with Sym_n . Show that $df_A(B) = A^tB + B^tA$.
- (ii) Prove that $I_n \in \text{Sym}_n$ is a regular value of f.
- (iii) Conclude that $O(n)$ is a $\frac{n(n-1)}{2}$ dimensional submanifold of \mathcal{M}_n .
- (iv) Find all regular points, critical points, regular values and critical values of f .
- (v) Check Sard's theorem for this example.

2. The Whitney embedding theorem says that if M is an *n*-dimensional manifold, then there exists an embedding $\iota : M \to \mathbb{R}^{2n}$, i.e., every ndimensional manifold is diffeomorphic to a submanifold of Euclidean 2n dimensional space. We prove an easier version of the theorem.

Theorem Let M be a compact manifold. Then M can be embedded in some Euclidean space.

Hint: Let $\mathcal{A} = \{(\varphi_i, U_i, V_i), i = 1, \cdots, r\}$ be an atlas. Let $\{\rho_i, i =$ $1, \dots, r$ be a partition of unity subordinate to this atlas. For each i, let $\psi_i: M \to \mathbb{R}^n$ be the map

$$
\psi_i(p) = \begin{cases} \rho_i(p)\varphi_i(p) & \text{if } p \text{ is in } U_i \\ 0 & \text{if } p \text{ is not in } U_i. \end{cases}
$$

Show that the map

$$
\iota:M\to\mathbb{R}^{nr+r}
$$

which maps $p \in M$ to the $(nr + r)$ -tuple

$$
(\psi_1(p),\cdots,\psi_r(p),\rho_1(p),\cdots\rho_r(p))
$$

is an embedding.

3.(optional) Suppose that v and w are two non-vanishing smooth vector fields which are pointwise proportional, that is, $w = f \cdot v$ for a non-vanishing smooth function f on M . Prove that the respective maximal integral curves $\gamma: I \to M$ and $\tilde{\gamma}: J \to M$ for v and w through $p \in M$ at time 0 satisfy $\tilde{\gamma} = \gamma \circ F$ for a unique diffeomorphism $F : J \to I$ preserving 0.

Roughly speaking, this statement says that maximal integral curves are "the same" up to a reparametrization. In other words, the trajectory of the integral curve depends only on the direction of the vector field.