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Abstract

We propose a novel approach for activity analysis in multiple synchronized but uncalibrated static
camera views. In this paper, we refer to activities as motion patterns of objects, which correspond to
paths in far-field scenes. We assume that the topology of cameras is unknown and quite arbitrary, the
fields of view covered by these cameras may have no overlap or any amount of overlap, and objects may
move on different ground planes. Using low-level cues, objects are first tracked in each camera view
independently, and the positions and velocities of objects along trajectories are computed as features.
Under a probabilistic model, our approach jointly learns the distribution of an activity in the feature
spaces of different camera’s views. Then it accomplishes the following tasks: (1) grouping trajectories,
which may be in different camera views but belong to the same activity, into one cluster; (2) modeling
paths commonly taken by objects across multiple camera views; (3) detecting abnormal activities.
Advantages of this approach are that it does not require first solving the challenging correspondence
problem, and that learning is unsupervised. Even though correspondence is not a prerequisite, after the
models of activities have been learnt, they can help to solve the correspondence problem, since if two
trajectories in different camera views belong to the same activity, they are likely to correspond to the
same object. Our approach is evaluated on a simulated data set and two very large real data sets, which

have 22,951 and 14, 985 trajectories respectively.

Index Terms

Visual surveillance, Activity analysis in multiple camera views, Correspondence, Clustering.

I. INTRODUCTION

In visual surveillance, a key task is to monitor activities in the scene. People have interest in
discovering typical and abnormal activities, detecting activities of some categories, and knowing
some structures of the scenes, such as paths commonly taken by objects, sources and sinks.
Because visual surveillance systems capture a huge amount of data from many different scenes,
people expect the algorithms to be unsupervised with little human labeling effort as possible.
When modeling activities, while some approaches [1], [2], [3], [4], [5], [6], [7], [8] directly
extract motion and appearance features from video streams without relying on tracking and
object detection, in many surveillance systems [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], especially in far-field settings, objects are first detected and tracked and the activity

of an object is then treated as sequential movements along its trajectory. Through tracking,
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(a) (b)

Fig. 1. Simulated examples of activity categories distinguished by motion patterns. Trajectories of different activity categories

are marked by colors. Trajectories are obtained from simulation. (a) Activities observed in a single giant camera view, which is
usually unavailable in real life. (b) The same activities as in (a) are observed in four different camera views, which are similar

to the camera views available in real life.

an activity executed by a single object can be separated from other co-occurring activities,
and features related to the activity can be integrated as a track. In many far-field surveillance
settings, the captured videos are of low resolution and poor quality, and it is difficult to compute
more complicated features, such as gestures, local motions, or appearance of objects within the
tracks. Usually only positions of objects are recorded along tracks, which are called trajectories.
Although quite simple, the motion patterns of trajectories can distinguish many different activity
categories, especially in far-field settings. Examples can be found in Figure 1 (a). The goal of this
work is to model activities by trajectory analysis: clustering trajectories into different activities,
detecting abnormal trajectories, and modeling paths commonly taken by objects.

Many approaches [10], [20], [21], [22], [23], [24], [25], [17], [19] were proposed to cluster or
classify trajectories into activities. They used the spatial proximity between a pair of trajectories,
measured in different ways, for clustering. Activities are often closely related to the structures of
the scene, e.g. roads, paths, entry and exit points, which can help not only high-level description
of activities [17], but also low-level tracking and classification [26]. The models of paths com-
monly taken by objects can be obtained by finding the spatial extents of trajectory clusters [21],
[271, [28], [17], [29]. Entry and exit points are detected as the ends of paths [17].

All these clustering and modeling approaches assumed a single camera view whose visible

area is finite and limited by the structures of the scene. In order to monitor activities in a wide
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area, video streams from multiple cameras have to be used. Examples of activities observed
in different camera views can be found in Figure 1 (b). Many systems [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48] using multiple
cameras for visual surveillance have been developed in recent years and they are based on
various assumptions on the number of cameras, the topology and geometry of camera views,
and camera calibration. Most of these approaches focused on tracking objects across multiple
cameras or doing correspondence of trajectories in different camera views. In general, this is a
very difficult problem. Because of the structures of the scenes, the distribution and configuration
of these cameras could be quite arbitrary. The camera views may have any combination of
large, little, or even no overlap. The objects in the views may move on one or multiple ground
planes. Analyzing activities over such a multi-camera network is quite challenging. A natural
way of doing multi-camera surveillance is to first infer the topology of cameras [39], [44],
solve the correspondence problem [30], [33], [34], [38], [35], [37], [40], [41], [42], [43], [45],
[47], stitching the trajectories of the same object in different camera views into a complete long
trajectory, and then analyze the stitched trajectories using the same approaches developed for a
single camera view. However both inferring the topology of cameras and solving the multi-camera
correspondence problem are notoriously difficult especially when the number of cameras is large
and the topology of the cameras is arbitrary. The ultimate goal of some surveillance systems is
activity analysis instead of solving correspondence. In this paper, we show that activity analysis
in multiple camera views can be accomplished without solving the correspondence problem.

We propose an approach to group trajectories, which may be in different camera views but
belong to the same activity, into one cluster and model the paths of objects across cameras.
They are jointly learnt under a probabilistic model, that is completely unsupervised and does
not require the correspondence problem to be solved in advance. We assume that

o The cameras are static and synchronized but do not have to be calibrated.

« The fields of view covered by these cameras may have no overlap or any amount of overlap.

However we assume that when an object exits a camera view, it is already in or will enter
one of the other camera views within time 7.

« Objects may move on different ground planes.

Examples of multi-camera settings are shown in Figure 2.

We briefly explain several basic concepts and assumptions held in this paper. There are paths
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Camera 3
(a) Parking lot scene

Camera 2

Camera 1 Camera 2 Camera 3 Camera 4 Topology
(b) Street scene

Fig. 2. Camera views and their topology in two data sets, a parking lot scene and a street scene. When the topology of camera
views is plotted, the fields of camera views are represented by different colors: blue (camera 1), red (camera 2), green (camera

3), yellow (camera 4). However, our approach does not require knowledge of the topology of the cameras in advance.

in the physical world. Objects move along these paths and thus have different moving patterns
(examples of different moving patterns can be found in Figure 1), which are called activities.
A path may be observed in multiple camera views and has spatial distributions in these views.
Although some paths, such as roads of vehicles can be recognized by their physical features in
the scene, some paths cannot be. For example, pedestrians take a short cut on the grass field.
A trajectory, which only records the positions of an object, is a history of the movement of
an object in a camera view. The points on trajectories are called observations. In this work,
trajectories are clustered into different activities, based on their spatial distributions and moving
directions. A cluster of trajectories is related to a path in the physical world. The scene of a
camera view is quantized into small cells. When an object moves, it connects two cells far apart
in a camera view by its trajectory. Our probabilistic model is based on some simple, general
assumptions on the spatial and temporal features related to activities: (1) cells located on the
same path are likely to be connected by trajectories; (2) trajectories passing through the same
path belong to the same activity; (3) it is likely for trajectories of the same object observed in
different camera views to be on the same path in the real world and belong to the same activity;
otherwise, objects may switch paths when crossing different camera views.

In our approach, a network is first built by connecting trajectories that are in different camera
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views and whose temporal extents are close by edges. Then a probabilistic model, in which
different kinds of activities have distributions in low-level feature spaces of different camera
views, is built. A trajectory is treated as a set of observations that belong to different activities.
A smoothness constraint requires that two neighboring trajectories connected by an edge have
similar distributions over activities. Trajectories are clustered according to the assigned major
activities among their observations. The distributions of activities over feature spaces of different
camera views model the regions of paths across cameras. We evaluate our approach on a
simulated data set and two real data sets, a parking lot scene and a street scene, each of which

has four cameras. The views and topology of these cameras are shown in Figure 2.

A. Related Work

Many similarity-based trajectory clustering methods have been proposed in past years. The
spatial proximity between each pair of trajectories is measured in different ways, such as Eu-
clidean distance [24], Hausdorff distance [22] and its variations [17], hidden Markov model [23],
and dynamic time warping [20]. A comparison of different similarity measures can be found
in [25]. Based on the similarity matrix, some clustering algorithms such as spectral clustering
and graph-cut were used to group trajectories in to different activity categories. The complexity
in both time and space of these approaches is at least O(M?) where M is the number of
trajectories. The complexity of labeling a new trajectory as one of the activity categories or
an abnormality is O(M), since similarity-based approaches required computing the similarity
between the new trajectory and each of the trajectories in the training set. Visual surveillance
systems often require processing data collected over weeks or even months. These approaches
had difficulties with very large data sets. The spatial extents of paths related to activities can
be estimated from trajectory clusters [28], [21], [17], [29]. All these approaches assumed that
trajectories are observed in a single camera view. In order to extend these approaches to multiple
camera views, trajectories observed in different camera views have to be stitched together.

Considerable work has been done to solve the challenging correspondence problem of trajecto-
ries observed in multiple camera views. One way is to manually label salient points in the scene
and record their coordinates in the 3D world. After mapping 2D image planes to the 3D world
[49], [50], objects can be tracked in multiple camera views. When the camera views overlap,

static features can be selected to compute an assumed homography between two camera views
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[51] and calibrate camera views to a single global ground plane. Trajectories in different camera
views can be stitched based on their spatial proximity on the common ground plane. In general,
automatically finding correspondence of static features between different views is difficult.

Lee et al. [33], Sheikh and Shah [47], and Stauffer and Tieu [38] calibrated multiple camera
views using tracking data from moving objects. They also assumed that camera views had
significant overlap and that objects moved on the same ground plane. Lee et al. [33] and Sheikh
and Shah [47] assumed that the topological arrangement of camera views was known. Stauffer
and Tieu [38] could automatically infer it, but with high complexity (O(N?) where N is the
number of camera views).

When the camera views are disjointed or their overlap is small, automatic calibration is difficult
and the appearance of objects is often used as a cue to correspondence [37], [42], [41], [43], [45],
[52]. This is a very challenging problem and not well solved yet. The appearance of objects may
significantly change because of different cameras’ settings and different poses of objects. Many
objects, such as cars or persons, have similar appearance, confusing correspondence. In far-field
settings, objects may only cover a few pixels, making matching difficult. Other approaches [39],
[44] inferred the topology of disjoint camera views using the transition time between cameras.

Even given similarities between trajectories observed in different camera views, solving the
correspondence problem is still difficult because of the large search space, especially when there
are many trajectories and cameras. It requires searching in the solution space of N-partite graphs,
where NV is the number of cameras [47]. In general, if there are more than two cameras, the
problem is NP hard in the number of trajectories [53]. It has solution in polynomial time only
with some particular topologies of camera views and the topology has to be known [37].

In summary, all these trajectory correspondence approaches had various assumptions on the
topology and geometry of camera views, and they faced difficulties of camera calibrations,
appearance matching, inference on the topology of camera views, and high computational cost
to search for the optimal solution. The contributions of this paper are that we directly cluster
trajectories into activities and model regions of paths over a multi-camera network without
solving the correspondence problem. Given a general setting of a camera network, solving the
correspondence problem is difficult. So our method has less restriction on the topology of camera
views, the structures of the scene, and the number of cameras. Furthermore, in our approach

each trajectory cluster is represented by a parametric probabilistic model. It does not require
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computing the similarity between each pair of trajectories. It has much lower space complexity
compared with those similarity-based approaches. So it is more appropriate to process huge data
sets often required in visual surveillance applications.

The paper is organized as following. Section II explains how to compute low-level features
from trajectories and quantize them into visual words. In Section III, a trajectory network is
built by connecting trajectories which are in different camera views. In Section IV introduces
the models of activities (paths). In Section V, our algorithms are evaluated on a simulated data

set and two real data sets.

II. FEATURE SPACE

Objects are tracked in each of the camera views independently using the Stauffer-Grimson
tracker [10]. A trajectory is treated as a set of observations. The locations and moving directions
of observations of an object are computed as features and quantized to visual words according
to a codebook of its camera view. In each camera view, the space of the view is uniformly
quantized into small cells and the velocity of objects is quantized into several directions. A
global codebook concatenates the codebooks of all the camera views. Thus the word value of an
observation i is indexed by (c;, z;, y;, d;) in the global codebook. ¢; is the camera view in which
i is observed. (z;,y;) and d; are the quantized coordinates and moving direction of observation
1 in camera c;. The set of visual words on the trajectory are modeled as exchangeable (i.e., the
distribution is invariant to a permutation of the observations). The moving direction encoded
in the word value captures the first order temporal information among observations. Although
quite simple, the position and velocity features can distinguish many different activity patterns

especially in far-field settings.

III. TRAJECTORY NETWORK

A network is built connecting trajectories observed in multiple camera views based on their
temporal extents. Each trajectory is a node on the network. Let ¢, and t.; be the starting and
ending time of trajectory 7. 7' is a positive temporal threshold. It is roughly the maximum
transition time of objects moving between adjacent camera views. If trajectories a and b are

observed in different camera views and their temporal extents are close,
(tsa S tsb S tea + T) V (tsb S tsa S teb + T)7 (1)
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O—

(d)

Camera3

Fig. 3. An example of building a network connecting trajectories in multiple camera views. (a) Trajectories in three camera
views. (b) The temporal extents of trajectories 1 and 2. (c) The temporal extents of trajectories 3 and 4. (d) The network

connecting trajectories. See text for details.

then a and b will be connected by an edge on the network. This means that ¢ and b may be the
same object since they are observed by cameras around the same time. There is no edge between
two trajectories observed in the same camera view. An example can be found in Figure 3. As
shown in (a), the views of cameras 1 and 2 overlap and are disjoint with the view of camera
3. Trajectories 1 and 2 observed by cameras 1 and 2 correspond to the same object moving
across camera views. Their temporal extents overlap as shown in (b), so they are connected
by an edge on the network as shown in (d). Trajectories 3 and 4 observed by cameras 1 and
3 correspond to an object crossing disjoint views. Their temporal extents have no overlap but
the gap is smaller than 7' as shown in (c), so they are also connected. Trajectories 3 and 6,
5 and 7 do not correspond to the same objects, but their temporal extents are close, so they
are also connected on the network. A single trajectory 3 can be connected to two trajectories
(4 and 6) in other camera views. An edge on the network indicates a possible correspondence
candidate only based on the temporal information of trajectories. But we do not really solve the
correspondence problem when building the trajectory network, since many edges are actually

false correspondences. The network simply keeps all of the possible candidates.

IV. PROBABILISTIC MODEL

In this section, we describe our probabilistic model which clusters trajectories in different
camera views into activities and models paths across camera views. Our work is related to

topic models, such as Probabilistic Latent Semantic Analysis (pLSA) [54] and Latent Dirichlet
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Fig. 4. An example to describe the high level picture of our model. See detail in the text.

Allocation (LDA) [55], which were used for word-document analysis. These topic models assume
that a document is a mixture of topics and cluster words, such as “professor” and “university”,
that often co-occur in the same documents into one topic, such as “education”. In our domain,
documents are trajectories, words are observations, and topics are activities (paths). Each activity
has a distribution over locations and moving directions in different camera views, and corresponds
to a path. If two word values, which are indices of locations and moving directions, often co-occur
on the same trajectories, they are on the same path. Trajectories passing through the same path
belong to the same activity. In previous topic models, documents are generated independently.
However, we assume that if two trajectories in different camera views are connected by an edge
in the network, which means that they may correspond to the same object since they are observed
by cameras around the same time, they tend to have similar distributions over activities. Thus the
distributions of an activity (a path of objects) in different camera views can be jointly modeled.
In Figure 4, we use an example to describe the high level picture of our model. Trajectories a and
b are observed in different camera views and connected by an edge on the trajectory network.
Points on trajectories are assigned to activity categories by fitting activity models. Thus both a
and b have distributions over activities. The smoothness constraint requires that their distributions
over activities are similar in order to have small penalty. In this example, both trajectory a and
b have a larger distribution on activity 1, so the models of activity 1 in two different camera
views can be related to the same activity.

Let M be the number of trajectories. Each trajectory j has N; observations. Each observation ¢

on trajectory j has a visual word value w;; which is an index of the global codebook. Observations
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will be clustered to one of the K activity categories. Let z;; be the activity label of observation
1 on trajectory j. Each activity k£ has a multinomial distribution ¢, over the global codebook.
So an activity is modeled as distributions over space and moving directions in multiple camera

views. ¢y is sampled from a Dirichlet prior

p(9r|B) = Dir(dw; ), (2

where Dir(+;-) is Dirichlet distribution and [ is a flat hyperparameter. If a visual word w;; has

activity label zj;, its data likelihood is

p<wji‘zjia {on}) = ¢zﬁwﬂ- 3)

Eq 2 and 3 are the same as modeled in LDA.

Each trajectory has a random variable 6; which is the parameter of a multinomial distribution
over K activities. Activity labels {z;;} of observations are sampled from 6;. If two trajectories
71 and j, are connected by an edge on the network, they are neighbors and the smoothness
constraint requires that 6; and ¢;, are similar and the distributions of {z;,;} and {z;,;} are

similar. The joint distribution of {¢,} and {z;;} are modeled as,

0
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s =
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:”[ =1 70 Dir(6;; o + E My e, F 7Y g njk) ||9jzjz}
j=1 F(K o+ Z] eQ; ij 1 nj’k‘) J€Qy J'EQ; i=1

“4)
I'(-) is the Gamma function. n; is the number of observations assigned to activity k& on trajectory
J. I is the set of pairs of neighboring trajectories which are connected. {2; is the set of trajectories
connected with j. o is a flat Dirichlet prior as a hyperparameter. (3_,cq. 71, - -, 2 jreq, MK )
is the histogram of observations assigned to K activity categories on the neighboring trajectories
of j. It is used as the Dirichlet parameter for 6;, after being weighted by a positive scalar vy and

added to a flat prior a. Let pp, = a4+ yreq, Tk According to the properties of the Dirichlet
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distribution, if 6; ~ Dir(py, ..., px), the expectation of 6; is (p1/ > pk, ..., P/ Y pr) and its
variation is small if ) pj, is large. Notice that z;; is sampled from 6#; and 6, has a constraint
added by z;/; on its neighboring trajectories. So trajectory j tends to have a similar distribution
over activities as its neighboring trajectories, which means that they are smooth. A larger ~ puts
a stronger smoothness constraint. If v = 0, Eq 4 is the same as in LDA where {6;} are sampled
from a Dirichlet prior Dir(-; «) independently.

Given Eq 2, 3 and 4, finally the joint distribution of {¢x}, {0;}, {#;;} and {w;;} is

p({qbk}? {9]'}, {Zji}> {wji}|a> B,7)

=p({6;}. Lzl y) [ poud18) [ T T p(fwiid 25}, {n})

j=1i=1

M K
ret Lo+, o k) .
:H[ I D1r(t%~;oz—i—7 E Njriy ey F Y E nj’K)
j=1 [(K - O‘"’VZJ e, Zk 17%%) §'eQ; J'eQ;

J

Dir ¢ka HH J2ji szﬂwj2 . (5)

= Jj=11i=1

\’:]w

A. Learning and Inference

We do inference by Gibbs sampling. It turns out that {6;} and {¢;} can be integrated out
during the Gibbs sampling procedure.

p({zji}7 {wji}|a,ﬁ7fy)
o I R COR CACA TR AV TN
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where W is the size of the global codebook, my,, 1s the number of observations assigned to
activity k with value w, my. is the total number of observations assigned to activity k, n;j is
the number of observations assigned to activity k on trajectory j, and n;. is the total number of
observations on trajectory j. Then the conditional distribution of z;; given all the other activity
labels z77% is

Btmiy, ot 1 o, ni
W-B+m? K-a+n” +7Y e ny.

p(zji = k|z_ji7 {wji}7 aaﬁv’Y) X (7)

where m,;j)z m,;” n]_k”, and nj_,” are the same statistics as M5 Mies Mk and n;. except
that they have excluded observation ¢ on trajectory j. To have a large posterior in Eq 7, the
first term requires that the value of observation ¢ should fit the model of activity %, and the
second term requires that its activity label is consistent with those of observations on the same
trajectory and neighboring trajectories, with + controlling the weight of neighboring trajectories.
The models of activities are not explicitly learnt during the Gibbs sampling procedure, but they

can be estimated from any single sample of {z;;},

N B—i_mkw

B. Labeling Trajectories into Activities

A trajectory is labeled as activity k, if most of its observations are assigned to k. The activity
label of an observation can be obtained during the Gibbs sampling procedure based on Eq. 7.
However, there may be an over smoothing effect, since in some cases most of the trajectories
being the neighbors of trajectory j do not correspond to the same object as j. In this work, we
adopt an alternative labeling approach which actually achieves better performance in experiments.
As shown by the experimental results in Section V, the activity models learnt from Gibbs
sampling are distinctive enough to label trajectories. After the activity models have been learnt
and fixed at the end of Gibbs sampling, which uses Eq. 7 and 8, we ignore the smoothness

constraint among trajectories and label the observation as
Zji = arg mkaX ¢k’w]'¢ (9)

This is also used to label an unseen new trajectory.
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C. Detection of Abnormal Trajectories

When detecting abnormal trajectories, we also ignore the smoothness constraint and fix the
learnt activity models {gzgk} A trajectory is detected as an abnormality if it does not fit any
activity model well. Then abnormality detection is reduced to the Latent Dirichlet Allocation
model proposed in [55]. The likelihood of a trajectory j under the learnt activity models {ngSk}
is

Nj
pws = {wdla (o)) = [ p@5la) | [[ X pealdlptwsté) | ao)
i=1 zj;
where p(6;|a) is a Dirichlet distribution, and both p(z;;|¢;) and p(wji|gzgzﬁ) are discrete distribu-
tions. Since the computation of Eq. 10 is intractable, in [55] a variational approach was used
to compute a lower bound of Eq. 10. A trajectory is flagged as abnormal if its lower bound is

small.

D. Complexity

In order to simplify the notation, we assume that all the trajectories have the same number of
observations, which is a fixed constant. The spatial complexity of our approach is O(WK) +
O(MK), while that of similarity based approaches is at least O(M?). The storage of similarity
based approaches is unmanageable when M is huge. W is the size of the codebook, K is
the number of activity categories, and M is the number of trajectories. In our approach, the
time complexity of each Gibbs sampling iteration is O(M ), however it is difficult to provide
theoretical analysis on the convergence of Gibbs sampling. Similarity based approaches have to
compute the similarity of O(M?) pairs of trajectories and if spectral clustering is used, it is quite
challenging to compute the eigenvectors of a huge M x M similarity matrix when M is large.
The time complexity of our approach to label a new trajectory into one of the activity categories
or detect a new trajectory as abnormal is O(K)!, while the time complexity of similarity based
approaches is at least O(M). So our approach is much more efficient when the number of

trajectories is huge.

'In abnormality detection, a variational approach [55] is used to compute a lower bound of the data likelihood (Eq. 10) in an

iterative process. We assume the number of iterations is small.
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V. EXPERIMENTAL RESULTS

We evaluate our approach on two data sets, a parking lot scene and a street scene. Each has
four camera views. Each camera view is in size of 320 x 240. To build the codebook, each
camera view is quantized into 64 x 48 cells. Each cell is of size 5 x 5. The moving directions
of moving pixels are quantized into four directions. There are tracking errors in both of the two
data sets. For example, a track may break into fragments because of interactions among objects.
In order to obtain more quantitative evaluation, we simulate some trajectories whose activity

categories are known as the ground truth, and evaluate our approach on the simulated data.

A. Learning Activity Models and Clustering Trajectories

1) Parking Lot Scene: The parking lot data set has 22, 951 trajectories, collected from 10 hours
during the day time over 3 days. Inspection shows that it is a fairly busy scene. The topology
of its four camera views is shown in Figure 2 (a). The view of camera 1 has no overlap with
other camera views. However, the gap between views of cameras 1 and 2 is small. The views
of cameras 2 and 3 have small overlap. The views of cameras 3 and 4 have large overlap.
Our approach does not require the knowledge of the topology of cameras. Fourteen different
activities are learnt from this data set. Eight of them are shown in Figure 5 and 6. Please see all
of the fourteen activities at a higher resolution in our supplementary material. For each activity,
we plot its distribution over space and moving directions in the four camera views and the
trajectories clustered into this activity. When visualizing activity models, moving directions are
represented by different colors, and the density of distributions over space and moving directions
is proportional to the brightness of colors (high brightness means high density). When plotting
trajectories, random colors are used to distinguish individual trajectories.

In Figure 5, activity 1 captures vehicles and pedestrians entering the parking lot. It has a large
extent in space and is observed by all four cameras. Activity 4 captures vehicles and pedestrians
leaving the parking lot. In activities 5 (Figure 6) and 7 (Figure 6), pedestrians are walking in the
same direction but on different paths. From the distributions of their models, it is observed that
the two paths are side by side but well separated in space. The path of activity 6 occupies almost
the same region as that of activity 5. However, pedestrians are moving in opposite directions in

these two activities, so the distributions of their models are plotted in different colors. In activity
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8 (Figure 6), pedestrians appear from behind the trees and a building as observed by cameras
3 and 4 and disappear from a gate of the parking lot in the view of camera 2.

2) Street Scene: The topology of the four cameras of the street scene is shown in Figure 2
(b). Camera 1 has a distant view of the street. Camera 2 zooms in on the top-right part in the
view of camera 1. The view of camera 3 has overlap with the views of cameras 1 and 2. It
extends the top-right part of the view in camera 1 along the street. The view of camera 4 partially
overlaps with the bottom region of the view in camera 1. There are 14,985 trajectories in this
data set, collected from 30 hours during day time in four days. Seventeen activities are learnt in
this scene. Eight of them are shown in Figure 7 and 8. See all of the seventeen activities in a
higher resolution in our supplementary material.

Activity 1 (Figure 7) captures vehicles moving on the road. It is observed by all of the four
cameras. Vehicles first move from the top-right corner to the bottom-left corner in the view of
camera 4. Then they enter the bottom region in the view of camera 1 and move upward. Some
vehicles disappear at the exit points observed in the views of cameras 2 and 3, and some move
further beyond the view of camera 3. In activities 4 (Figure 7), 6 (Figure 8), and 7 (Figure
8), pedestrians first walk along the sidewalk in the view of camera 1, and then cross the street
as observed by camera 4. The paths of activities 6 and 7 occupy similar regions in the view of
camera 1, but their paths diverge in the view of camera 4. The paths of activities 3 and 4, 5 and
6 occupy the same regions but pedestrians are moving in opposite directions on them.

As shown in Figure 5 - 8, the models of activities reveal some structures, such as paths
commonly taken by objects, and entrance and exit points in the scene. Some paths are less
related to the appearance of the scene. For example, some paths cross the street outside the
crosswalk in the street scene. Usually paths have spatial extents in multiple camera views. These
regions can be detected by simply thresholding the density of the distributions of activities (¢
in Eq 5). As observed, in these two very large data sets there are many outlier trajectories,
which do not fit any activity model well, such as those crossing the grass fields in the parking
lot scene. They are finally assigned some activity at random or because part of the trajectory
fits a particular activity.

3) Negative log likelihood on testing data: Since clustering trajectories into activities is
unsupervised learning, we compute the negative log likelihood on testing data to evaluate its

performance. It is the log of perplexity of proportion to the number of bits required to encode the
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Activity 1 Activity 2

Activity 3 Activity 4
Fig. 5. Distributions of activity models (1—4) and clusters of trajectories of the parking lot scene. When plotting the distributions
of activity models (in the four red windows on the top), different colors are used to represent different moving directions: —

(red), < (cyan), T (blue), | (magenta). When plotting trajectories clustered into different activities (in the four green windows

at the bottom), random colors are used to distinguish individual trajectories.
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Activity 5 Activity 6

Activity 7 Activity 8

Fig. 6. Distributions of activity models (5 — 8) and clusters of trajectories of the parking lot scene. See all of the 14 activity

models in a higher resolution in our supplementary material.
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Activity 1 Activity 2

Activity 3 Activity 4

Fig. 7. Distributions of activity models (1 — 4) and clusters of trajectories of the street scene. The meaning of colors is the

same as Figure 5.
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Activity 5 Activity 6

Activity 7 Activity 8

Fig. 8. Distributions of activity models (7 — 12) and clusters of trajectories of the street scene. See all of the 17 activity models

in a higher resolution in our supplementary material.
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TABLE 1

NEGATIVE LOG LIKELIHOOD UNDER OUR APPROACH AND TWO ALTERNATIVE TRAJECTORY NETWORKS.

Our approach Unconnected Random
Parking Lot 130.3 200.3 176.8
Street 85.7 228.8 135.2

testing data. It measures how unseen testing data fits the model learnt from training data. Two
hundred trajectories randomly sampled from each camera serve as the test set; the remaining
trajectories are used for training. To compare models with different trajectory networks, the
activity models {¢;} are learnt with smoothness constraint added by the trajectory network.
Once {¢y} are learnt and fixed, the negative log likelihood is computed on the test data ignoring
the smoothness constraint.

First, we compare our approach with two alternatives: (1) unconnected network; (2) network
with random correspondences?. The former completely abandons the smoothing constraint, so it
cannot jointly model the distributions of a single activity in multiple camera views. The latter
simulates the case when correspondence is poor. Both alternatives result in higher negative log
likelihood as shown in Table V-A.3.

We also compare against models learned with trajectories from a single to all of the cameras.
Models learned from a subset of the cameras will necessarily have lower negative log likelihood
for trajectories within those cameras; however, they are limited to modeling joint activities only
in a subset of the camera views. Our model captures joint activities in all cameras simultaneously,
and only exhibits a small increase in the negative log likelihood as shown in Table II.

4) Temporal Threshold: The temporal threshold 7" in Eq 1 determines the connectivity on
the trajectory network. If a camera view A is disjoint from other views and it takes objects
more than 7" seconds to cross the smallest gap between A and other views, then there is no

way to extend a path in A to other views. If 7" is large and the scene is busy, the network will

%First find correspondence candidates using Eq 1. Instead of fully connecting these candidates as in our model, a trajectory

is randomly connected with only one of the candidates in a different camera view.

September 10, 2008 DRAFT



SUBMISSION TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 22

TABLE I
NEGATIVE LOG LIKELIHOOD WITH MODELS TRAINED ON A VARIABLE NUMBER OF CAMERAS. THE TEST DATA IS 200
TRAJECTORIES FROM A SINGLE CAMERA. THE ACTIVITY MODELS IN THAT CAMERA ARE JOINTLY LEARNT WITH
DIFFERENT NUMBER OF CAMERAS (FROM 1 TO 4). THE LAST COLUMN IS A BASELINE MODEL TRAINED ON DATA WHOSE

CLUSTER LABELS OF TRAJECTORIES ARE RANDOMLY ASSIGNED.

‘ 1 2 3 4 Random
Parking Lot | 1209 121.3 122.8 1233 425
Street 40.0 41.5 44.9 42.2 168

have too many “noisy” edges which connect two trajectories actually corresponding to different
objects. Under-smoothing could lead to the same activity separated into different clusters, while
over-smoothing could lead to different activities joining into the same cluster. Empirically, we
achieved similar results with a wide range of values for 7': for the street scene data set, good
results are achieved when 7' varies between 0 and 30 seconds; for the parking lot data set, the
range of good values of 7" is roughly from 3 to 15 seconds because the parking lot scene is busier
and the view of camera 1 is disjoint from other camera views. There is quantitative evaluation

of T" on a simulated data set in Section V-E.

B. Correspondence

Although our activity analysis approach does not require correspondence among trajectories
in different camera views, after the models of activities have been learnt in an unsupervised
way, they can help to solve the correspondence problem, since if two trajectories belong to the
same activity and are connected by an edge, they are likely to correspond to the same object.
For example, see Figure 9. We pick a query trajectory from one of the camera views and
mark it using green color and a star. All the trajectories in other camera views satisfying Eq 1
are plotted in random colors. The red color and red stars mark the trajectories with the same
activity category as the query trajectory. They are likely to correspond to the same object. So
the information on activity category can dramatically reduce the search space when solving the

correspondence problem. There is a quantitative evaluation in Section V-E.2.
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Fig. 9. Activity models learnt in an unsupervised way help to solve the correspondence problem.

C. Abnormality Detection

In Figure 10 and 11 we plot some trajectories with low data likelihoods, which have been
normalized by the length of trajectories, and are detected as abnormality from the parking lot
scene and the street scene. All of the trajectories are sorted by abnormality and the top 30 are
shown. Some very short trajectories most likely caused by tracking errors are not shown here.
In the parking lot scene, most of the detected abnormal trajectories are pedestrians walking on
the grass field. In the street scene, abnormal activities include pedestrians walking on the grass
fields, pedestrians crossing the street, pedestrians walking in the middle of the street, and vehicles

moving along a wrong lane.

D. Computational Cost

Running on a computer with 2GHz CPU, it takes about two hours to learn the activity models
from 22,951 trajectories of the parking lot data set and 40 minutes to learn the activity models
from 14, 985 trajectories from the street scene. When the activity models are learnt and fixed, it
takes less than 0.03 second to compute the likelihood of a trajectory in order to detect abnormality,

and it is much faster to label a new trajectory as some activity category.
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Fig. 10. Some trajectories with low likelihoods from the parking lot scene. Random colors are used to distinguish individual

trajectories. In order to indicate the moving direction of a trajectory, the starting and ending points of a trajectory is marked by

+ in red and cyan colors.

Fig. 11.  Some trajectories with low likelihoods from the street scene. Random colors are used to distinguish individual

trajectories. In order to indicate the moving direction of a trajectory, the starting and ending points of a trajectory is marked by
+ in red and cyan colors.
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E. Simulated Data

In order to quantitatively evaluate our algorithm, we simulate data used as the ground truth.
As shown in Figure 12 (a), we choose a scene which covers almost the same area of the street
scene we used in Section V-A.2. On a satellite image, we manually draw the fields covered by
four camera views. The fields are convex four-sided polygons. These fields are converted to a
standard camera view 1n size of 240 x 360 through projective transformation. The views observed
by four cameras are shown in Figure 12 (b). We manually draw the central lines of eight paths
on the satellite image (Figure 13 (a)) and simulate 8000 trajectories. We assume trajectories
have almost the same speed, since speed does not play an important role in our algorithm. The

starting points of trajectories are generated sequentially as follows.
to(ir1) = tsi + Otiya, (1)
At;yq ~ Exponential(N). (12)

t; is the starting time of the ¢th trajectory. The temporal difference At;; = t,(;41) —t.; between
two successive trajectories is sampled from a exponential distribution with mean \. A trajectory
¢ is randomly assigned to one of the eight predefined activities, k. Trajectory ¢ samples the
location of its starting point from a Gaussian distribution centered at the starting point of path &
with variance oy (o7 = 5 in this simulation). Then ¢ samples the remaining points sequentially
with the velocity specified by path k£ and being added to Gaussian noise with variance oy (00 = 2
in this simulation). The simulated trajectories in the global views and each of the four camera
views are shown in Figure 13 (b) and (c).

1) Learning activity models and clustering trajectories: A is the parameter controlling how
busy the scene is. When )\ is smaller, more objects co-exist in the scene at the same time, which
means that there are more edges on the trajectory network and it is harder for our algorithm to
jointly learn the models of activities in different camera views. In our experiments, we change
the value of A from 5 seconds to 40 seconds. Based on the speed set for this experiment, the
time an object spent to pass through a path varies from 170 seconds to 410 seconds. It depends
on the length of the path. When A takes values from 5 seconds to 40 seconds, the averaged
number of objects co-existing in the scene varies from 57.5 to 7.1 (see Figure 14). After the

trajectories are clustered by our algorithm, we manually specify each of the eight clusters as an
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Camera2

Camera3 Camera4d

(a) (b)
Fig. 12. (a) The global view of the scene where the data is simulated and the fields covered by four camera views. The

fields are marked by polygons. Colors are used to distinguish cameras. (b) The views observed by cameras after projective

transformation.

(a) (b) (©

Fig. 13. (a) The central lines of eight paths manually drawn in the scene. They are distinguished by colors: 1 (red), 2 (blue),

3 (dark green), 4 (magenta), 5 (black), 6 (cyan), 7 (yellow), and 8 (orange). (b) Trajectories generated from the eight paths. (c)

Trajectories observed in four cameras.

activity category, so each trajectory is assigned an activity label by our algorithm. By comparing
with the ground truth, the accuracy of activity classification is computed. The accuracies when
choosing different A values are shown Figure 14. The accuracy is high (> 97.8%) when A > 30
seconds. The models of activities in a single global view and four camera views learnt from
the simulated data when A = 30 seconds are shown in Figure 15 and 16. Notice that when

A = 30 seconds, if we randomly sample a time point, there are around 9.6 objects co-existing in
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Fig. 14. The accuracies of classifying trajectories into different activities when A takes different values and 7" is fixed as 0.

the scene on average. Each trajectory is connected to 12.4 trajectories by edges on the network
on average. When A decreases, some trajectories of different activities merge into one cluster.
When A\ = 5 seconds, the scene is very busy (there are 57.5 objects co-existing in the scene
on average), all of the trajectories are merged into one cluster and our algorithm cannot learn
any useful activity models from this data set. Each trajectory is connected to 73.0 trajectories
by edges on the network on average.

We further look into the structure of the trajectory network constructed according to the
temporal extents of trajectories in the data set when A = 30 seconds. Figure 17 shows the
number of edges which are related to different combinations of activities and camera views
according to the ground truth. The entry of (k;, ks) on the table of camera views i; and iy are
the number of edges connecting two trajectories, one of which is in camera view ¢; and belongs
to activity ki, and the other of which is in camera view 75 and belongs to activity k.. There are
six 8 x 8 tables. As we mentioned earlier, the edges on the trajectory network indicate possible
correspondence candidates based on the temporal extents of trajectories. If the correspondence
can be solved just using temporal information, all of the nonzero numbers in the table will be
on diagonal. Actually many off diagonal entries have nonzero numbers, which indicate false
correspondences, whose ambiguity cannot be solved by only using temporal information. The
ratio between the numbers of edges on diagonal and off diagonal is 0.2732. This ratio can be
understood as signal-to-noise ratio in some sense. There are many more false correspondences

than true correspondences. However, these false correspondences almost uniformly distribute
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Activity 1 Activity 2 Activity 3 Activity 4
Activity 5 Activity 6 Activity 7 Activity 8

Fig. 15. Distributions of activity models in a single global views learnt from the simulated data. The meaning of colors is the

same as Figure 5.

among different combinations of activities and work as background noise. So if a trajectory of
activity k; is connected with another trajectory of activity ks, ko is more likely to be the same as
k, than any one of the other activties. When the scene is busier, the signal-to-noise ratio is lower.
When A\ = 5, the ratio is 0.1692 and our algorithm fails. Notice that the signal-to-noise ratio is
1/7 = 0.1429, if trajectories are randomly connected without using any temporal information.
Figure 18 plots the classification accuracies when A is fixed as 40 seconds and the temporal
threshold 7" in Eq. 1 changes from 0 seconds to 300 seconds. The results stay at a high accuracy
when 7' varies in a large range between 0 second and 40 seconds. There is some interesting
correlation between Figure 14 and Figure 18. The performance of our algorithm drops if there
are too many edges on the trajectory network, which means that the “signal-to-noise” ratio is
low. The number of edges increases if A decreases, which means that the scene is busier and

there are more objects co-existing in the scene, or 7" increases. From Figure 14, when 7' is fixed
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Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Activity 7 Activity 8

Fig. 16. Distribution of activity models in four camera views learnt from the simulated data. The meaning of colors is the

same as Figure 5.

at 0 second, A = 30 seconds seems to be a turning point on the accuracy curve. On average,
there are around two more objects co-occurring when A = 30 seconds compared with A = 40
seconds. From Figure 18, when A\ is fixed at 40 seconds, 7" = 40 seconds seems to be a turning
point on the accuracy curve. Compared with 7" = 0 second, the temporal window in Eq. 1
extends for 2 x T = 80 seconds. In 80 seconds, there are around two more objects appearing
on average when A = 40 seconds. So there are approximately the same number of edges under
two settings. For (A = 30,7 = 0), on average each trajectory is connected to 12.4 trajectories
by edges on the network, and for (A = 40,7 = 40) this number is 13.0.

2) Using activity models to solve the correspondence problem: As mentioned in Section V-

B, the learnt activity models can help to solve the correspondence problem. We evaluate the
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Fig. 17. The number of pairs of simulated trajectories, which are in different camera views, belong to activities ¢ and j
(3,7 =1,...,8), and whose temporal extents are close. Here, A = 6 and 7" = 0.
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Fig. 18. The accuracies of classifying trajectories into different activities when the temporal threshold 7" change from 0 to 300

seconds. Here, A = 40 seconds.
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performance on simulated data. When there are more than two cameras views, the correspondence
problem is NP hard in the number of trajectories. Finding an approximate solution to this NP
hard problem is not the focus of this paper. So we demonstrate the capability of our activity
models by doing correspondence among trajectories in two camera views. Given the distances
between trajectories, correspondence of trajectories in two cameras views can be solved by the
Hungarian algorithm [56] in polynomial time. The distance D(a,b) between two trajectories a
and b which are in different views are define as follows. Each point on trajectories is assigned
to one of the activities according to Eq. 9. Thus each trajectory j has a distribution p; over

activities. If trajectories a and b satisfy the temporal constraint Eq 1,

D(a,b) = Zpa(k)log (%) + Zpb(k)log (;?ZEIZ?))) , (13)

which is Jensen-Shannon divergence; otherwise D(a,b) = oc.

We choose camera views 1 and 4 which are shown in Figure 12. 1000 trajectories are
simulated and they are not in the data set of 8000 trajectories used to learn the activity models.
1000 trajectories are observed in camera view 1 and around 880 trajectories are observed in
camera view 4. Some trajectories of activity 7 (see Figure 13) observed in camera view 1 have
no corresponding trajectories in camera view 4. We simulate different sets of data by changing
the parameter A. The accuracies of correspondence are plotted in Figure 19. It achieves very
good correspondence accuracy (higher than 97%) when A > 30. The accuracy drops when the
scene is busier because of two reasons: (1) the activity models are not well learnt; (2) some
objects of the same activity exist around the same time so they cannot be distinguished by

activity categories and temporal extents.

VI. DISCUSSION

The performance of our algorithm depends on the number of edges on the trajectory network.
If on average a trajectory is connected to a large number of other trajectories, which means
that there are many false correspondence candidates, the models of activities cannot be well
learnt. The number of edges increases because of two reasons: the scene is busy or the temporal
threshold 7' is large. A large T' allows a large transition gap between camera views. So if a
scene is busy, the transition gaps between cameras has to be small, which limits the topology

of camera views in some sense. In this work, only temporal information is used to build the
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Fig. 19. Accuracies of correspondence. Solve the correspondence problem of trajectories observed in the views of camera 1

and camera 4. \ varies from 5 seconds to 40 seconds.

trajectory network. That is why the algorithm is sensitive to how busy the scene is. Some other
features, such as appearance, can also be used to eliminate some edges. If two objects observed
in different camera views are poorly matched by appearance, their trajectories are not connected
by an edge even though their temporal extents are close. Thus activity models may be well learnt
even in a busy scene. However, in this case the problem of matching appearance across camera
views has to be addressed. It is a direction of our future study.

In this work, only positions and moving directions are computed as features of trajectories,
since in our application they are enough to model paths of objects. Some other features such as
size of objects and speed can also be added into this framework. They can be used to cluster
motion patterns into more categories, such as separating vehicles and pedestrians moving on
the same path. However, the size of the codebook will increase quickly as more features are
included and thus the computational cost will increase.

In our clustering method, the number of clusters K has to be manually chosen. Some non-
parametric models such as Hierarchical Dirichlet Processes [57], [8] can learn the number of

clusters from data. They could be used to improve our clustering method in the future work.

VII. CONCLUSION

We propose a framework to model activities and cluster trajectories over a multi-camera
network. The models of activities can be used to detect scene structures. It is unsupervised and

does not require first solving the challenging multi-camera correspondence problem. When the
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activity models have been learnt without supervision, it can help to solve the correspondence

problem. Experiments on a simulated data set and two data sets including a very large number

of trajectories demonstrate the effectiveness of this approach.
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