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In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into
bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is
automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified.
After the models of bundles have been learned from training data without supervision, they can be used as
priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new
subjects, new clusters can be created for structures not observed in the training data. Our approach does not
require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple
subjects. We present results on several data sets, the largest of which has more than 120,000 fibers.
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Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is an MRI modality
that has gained tremendous popularity in recent years and is one of
the first methods that made it possible to visualize and quantify the
organization of white matter in the human brain in vivo. It measures
local diffusivity of water within the tissue and provides information
about the orientation of white matter fiber tracts. dMRI has different
representations. For example, in Diffusion Tensor MRI (DT-MRI), a
local 3×3 symmetric matrix is used to characterize the motion of
water in all directions (Basser et al., 1994). There are more general
models such as High-Angular-Resolution Diffusion-Image (HARDI)
(Tuch et al., 2002), Q-ball (Tuch, 2004) and Diffusion Spectrum
Imaging (DSI) (Wedeen et al., 2005) etc. Extracting connectivity
information from DT-MRI, termed “tractography” (Basser et al., 2000;
Conturo et al., 1999), is an especially active area of research, as it
promises tomodel the pathways of whitematter tracts in the brain, by
connecting local diffusion measurements into global trace-lines. In
neurological studies of white matter using tractography it is often
important to identify anatomically meaningful fiber bundles. Similar
fibers form clusters of points, where each cluster is identified as a
“fiber bundle”. Some examples are shown in Figs. 1 and 2. The fiber
bundles of different subjects (examples are shown in Fig. 3) or fiber
bundles of the same subject captured at different times are compared
for the purposes of clinical study.
Automatically clustering fibers has drawn a lot of attention in
recent years. It faces many challenges. Full brain tractography
typically generates 10,000–100,000 fibers per subject. In some
cases, fibers from multiple subjects need to be clustered together for
comparison. Thus, the developed algorithms are expected to cluster
large scale data sets. Due to data quality and other factors,
tractography results may have a significant amount of errors. The
clustering algorithms are required to be robust to these errors. In
order to compare the fiber bundles of different subjects in group study
and save computational cost, it is of interest to explore how to use the
fiber bundles learned from old data sets to cluster fibers of new
subjects. To obtain fiber bundles which correspond to anatomical
structures, the clustering algorithms are expected to incorporate
anatomical information input by experts to guide tractography
segmentation.

A typical framework is to first define a pairwise similarity/distance
between fibers and to input the similaritymatrix to standard clustering
algorithms. Various distances betweenfibers have been proposed. Brun
et al. (2004) computed the Euclidean distances between 9-D fiber
shape descriptors. Jonasson et al. (2005) measured the similarity
between two fibers by counting the number of points sharing the same
voxel. Maddah et al. (2005) used the B-spline representation to
compare fibers. Gerig et al. (2004) proposed three measures related to
Hausdorff distance: closest point distance, mean of closest distances
and Hausdorff distance. Various clustering algorithms, such as
hierarchical clustering (single-link and complete-link) (Gerig et al.,
2004; Xia et al., 2005), fuzzy c-means (Maddah et al., 2008a), k-nearest
neighbors (Ding et al., 2003), normalized cuts (Brun et al., 2004),
spectral clustering (Brun et al., 2004; Jonasson et al., 2005; O'Donnell
andWestin, 2007) and dual rooted-graphs (Tsai et al., 2007) have been
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Fig. 1. Example of our tractography segmentation result. (a) Fibers generated from DT-
MRI. It is hard to identify anatomical structures without clustering fibers into bundles.
(b) Fiber bundles by tractography segmentation.

Fig. 3. Compare fiber bundles of two subjects.
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used. Mean of closest distances and spectral clustering are popular
among possible choices (Moberts et al., 2005; O'Donnell and Westin,
2007).

These clustering algorithms required manually specifying the
number of clusters or a threshold for deciding when to stop merging/
splitting clusters, both ofwhich are difficult to know especiallywhen the
data sets are complicated and noisy. Moberts et al. (2005) showed that
the performance of clustering varied dramatically when different
numbers of clusters were chosen. To avoid this difficulty, O'Donnell
and Westin (2007) first chose a large cluster number for spectral
clusteringand thenmanuallymerged clusters to obtainmodels forwhite
matter structures. Recently Zvitia et al. (2008) and Wassermann and
Fig. 2. Anatomical labels of some fiber bundles generated by our tractography
segmentation approach.
Deriche (2008) used mean-shift to decide the number of clusters. Zvitia
et al. (2008) required calculating the average of fibers, which was not
easy in cases when fibers were not represented as feature vectors and
only fiber similarities were available. Wassermann and Deriche (2008)
required the white matter fiber atlas as prior knowledge. Neji et al.
(2009) decided the number of clusters by adding a penalty to a larger
cluster number and solving the optimization using linear programming.
However, choosing the penalty term was ad hoc.

Another drawback of this framework is the high space and time
complexities of computing pairwise distances between fibers when
the data set is large. Whole brain tractography produces between
10,000 and 100,000 fibers per subject. It is difficult to compute a
100,000×100,000 similarity matrix or even to store it in memory.
Some clustering algorithms, such as spectral clustering, need to
compute the eigenvectors of this huge similarity matrix. This problem
becomesmore serious when clustering fibers of multiple subjects. The
current solutions are to cluster only a small portion of the whole data
set after subsampling or to do some numerical approximation based
on the sampled subset (O'Donnell and Westin, 2007). However,
important information from the full data set may be lost after
subsampling.

Besides this framework, some other approaches have been
proposed in recent years (Maddah et al., 2008b; Savajiev et al.,
2008; Wassermann et al., 2009; Wassermann et al., 2010). For
example, Savajiev et al. (2008) proposed a fiber tract segmentation
algorithm based on the geometric coherence of fiber orientations.
Instead of directly grouping fiber trajectories, it clustered diffusion
orientation distribution functions maxima. Maddah et al. (2008b)
proposed a probabilistic approach to cluster fibers without computing
pairwise distances. They used a Dirichlet distribution1 as a prior to
incorporate anatomical information. This approach is different from
ours. It used a parametric model, assuming that the number of clusters
is known and required manual initialization of cluster centers.
Maddah et al. (2008b) required establishing point correspondence
which was difficult, while our approach does not.

There are two typical ways of clustering fibers of multiple subjects
for comparison purposes. One is to put fibers of different subjects into
one data set and cluster them together. It has high computational cost
and is not scalable. The other way is to classify the fibers of new
subjects using the bundle models learned from a training set
(O'Donnell and Westin, 2007). The bundle models are fixed without
adaption to the new data. Among the approaches discussed above,
1 Dirichlet distribution is used as a prior of finite mixture models. These models can
only well adapt to data from particular distributions. Dirichlet process in our approach
is used as a prior in infinite mixture models. These models can well adapt to a wide
variety of data.

image of Fig.�2
image of Fig.�3


2 In this paper, “voxel” means the spatial granularity of the codebook and it is not
the image voxel.
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there are only a few (Maddah et al., 2005; Savajiev et al., 2008)
exploring how to incorporate anatomical information from experts to
guide tractography segmentation.

Nonparametric Bayesian models using Dirichlet processes (DP) as
priors have been widely applied in computer vision, language proces-
sing and bioinformatics because of their capability to learn the number
of clusters from data. Bayesian models involving Dirichlet process
mixtures (DPM) are at the heart of themodern nonparametric Bayesian
movement. Dirichlet process mixtures (DPM) models were applied to
medical image analysis in recent years because of their capability to
learn the number of clusters and their flexibility to adapt to a wide
variety of data. Adelino and Ferreira (2006) used a DPMmodel for brain
MRI tissue classification. In (Kim and Smyth, 2006; Thirion et al., 2007)
DPM models were used to model spatial brain activation patterns in
functionalmagnetic resonance imaging. In (Jbabdi et al., 2009), Jbabdi et
al. modeled the connectivity profiles of a brain region as an infinite
mixture of multivariate Gaussian distributions with a DP prior. To the
best of our knowledge, our work is the first to use HDPM for
tractography segmentation to automatically learn the number of
clusters from data. Our approach is related to the work (Teh et al.,
2006) where HDPM models were used for word-document analysis.
HDPMwas also used for trajectory analysis in visual surveillance (Wang
et al., 2008).

In this paper, we propose a nonparametric Bayesian framework to
cluster fibers into bundles. The 3D space of the brain is quantized into
voxels. A bundle is modeled as a discrete distribution over voxels and
orientations. This probabilistically models the spatial variation of the
pathways of fibers. The models of bundles are learned from how
voxels are connected by fibers instead of comparing distances
between fibers. If two voxels are connected by many fibers, a bundle
model will be learned with large weights on both voxels. This means
that they are on the same pathway of white matter tracts. Many
existing approaches have difficulty in determining the number of
clusters and in clustering a very large set of fibers. Our approach
automatically learns the number of clusters from data with Dirichlet
processes (DP) priors (Ferguson, 1973). While the space and time
complexities of existing distance-based fiber clustering approaches
are at least O(M2), where M is the number of fibers, the space
complexity of our approach is O(M) since it does not compute and
store pairwise distances between fibers.

After the models of bundles have been learnt from training data
without supervision, they are used as priors to cluster/classify new
fibers. Given fibers of new subjects observed, the models of bundles
learned from the training set are updated and fibers of new subjects
are clustered based on the updated models. Instead of fixing the
number of clusters as current methods do, our approach allows the
updated models to create new clusters for fiber bundles not observed
in the training data. Our framework can be extended to multiscale
clustering. First cluster fibers using a large size of voxels yielding
bundles corresponding to structures at a large scale. Then each bundle
can be further clustered using a smaller size of voxels, leading to
structures at a finer scale. Multiscale clustering makes it easier for
experts to identify white matter structures across different scales.
Experimental evaluation on several data sets shows the effectiveness
of our approach.

Method

In our method, hierarchical Bayesian models are used to cluster
fibers. Hierarchical Bayesian models can provide enough parameters
to fit complicated fiber bundle structures. In the meanwhile they
capture the dependency among parameters through sharing priors
and can better solve the overfitting problemwhich could be caused by
a large number of parameters (Gelman et al., 2004). Moreover,
hierarchical Bayesianmodels are flexible to be extended. For example,
in Clustering new data section, our model is extended by using pre-
learned bundle models as priors to guide clustering of new data. We
begin by introducing a parametric hierarchical Bayesian model
(Parametric model section), which is easier to understand. Using a
Dirichlet process (DP) explained in the Dirichlet process section, the
parametric model is extended to a nonparametric hierarchical
Bayesian model, hierarchical Dirichlet process mixture (HDPM)
model (Hierarchical Dirichlet processes mixture model section) and
Gibbs sampling is used for inference (Inference section). In the
Clustering new data section, we explain how to use the models of
bundles learned from old data as a prior to cluster new data. We will
use the graphical model representation to describe our probabilistic
models. Readers who are not familiar with graphical models can find
(Jordan, 2004) for reference.

Parametric model

Feature space
In probability theory, statistics, and machine learning, a graphical

model is a graph that represents independence among random
variables. The graphical model of our parametric hierarchical Bayesian
model is shown in Fig. 5. There areM fibers and eachfiber j hasNj points
which are ordered sequentially along the fiber. Our feature space is the
locations and orientations of points on fibers. oji =

→uji;Δ
→uji

� �
is the

observed3D coordinate→uji = xji; yji; zji
� �

and shiftΔ→uji =
→uji + 1−→uji of

point i onfiber j.Δ→uji has the information on theorientation of point i on
fiber j. The 3D space of the brain is uniformly quantized into voxels.2

When fibers pass through a voxel, theymay have different orientations.
We quantize the orientations of fibers within each voxel into different
directions, represented by different colors as shown in Fig. 4(a). In our
experiments, shifts fΔ→ujig are quantized into three orientations
Δ→u1 = 1;0;0ð ÞT , Δ→u2 = 0;1;0ð ÞT and Δ→u3 = 0;0;1ð ÞT . A codebook is
built, in which codes (entries of the codebook) are indices of voxels and
orientations. Let→uw be the centroid of the voxel and dw be the index of
the orientation vector corresponding to codew. Quantization is done in
a probabilistic way,

p oji jw
� �

= p →uji j→uw

� �
p Δ→uji jdw
� �

; ð1Þ

p →uji j→uw

� �
∝

cos2
jj→uji−→uwjj2

2R2 π

 !
; jj→uji−→uwjj≤R

0; jj→uji−→uwjj N R

;

8>><
>>: ð2Þ

p Δ→uji jdw
� �

∝
1; dw = arg maxd

jΔ→uji⋅Δ→udj
jjΔ→uji⋅Δ→udjj

0; otherwise

:

8><
>: ð3Þ

R is a parameter defining a spherical neighborhood of code w. Δ→ud is
one of the three orientation vectors fΔ→u1;Δ

→u2;Δ
→u3g. As shown in

Fig. 4(b), a point →uji;Δ
→uji

� �
could be assigned to codew if it falls in the

neighborhood of →uw and its shift Δ→uji is the closest to Δ→udw
. The

probability depends on its spatial distances to →uw and other
neighboring voxels. As shown in the experimental section, the size
of voxels affects the scale of fiber bundle structures found by
clustering. It is chosen empirically. By choosing different sizes of
voxels, multiscale clustering can be developed. By choosing the size of
neighborhood R, a point could be in the neighborhoods of multiple
voxels and will be assigned to one of the voxels in a probabilistic way.
In practice we choose it as 1.5 times of the voxel size. Since we do not
distinguish the starting and ending points of a fiber, the sign of the



Fig. 4. Feature quantization. (a) In order to build a codebook, the 3D space of the brain is uniformly quantized into voxels. Shift orientations within voxels are also quantized
(indicated by different colors). A bundle is modeled as a discrete distribution over the codebook. (b) A point →uji;Δ

→uji

� �
on a fiber, indicated by the red cross, is quantized into a code

→uw;Δ
→udw

� �
according to Eqs. (2) and (3).
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correlation between Δ→uji and Δ→ud is ignored in Eq. (3). The statistical
model ϕk of a bundle is a discrete distribution over voxels and
orientations. Optionally, if the symmetry across hemispheres is
considered, we can do bilateral clustering as in (O'Donnell and Westin,
2007). Assuming that the brain is aligned and x=0 is the midsagittal
plane, we modify observed 3D coordinates as →uji = jxji j ; yji; zji

� �
ignoring the signs of the x coordinates. Then, learnt models of bundles
are symmetric to the midsagittal reflection.

The M fibers are clustered into K bundles. Each fiber bundle k is
modeled as a discrete distributionϕk over the codebook (i.e. quantized
voxels and orientations within voxels). {ϕk} are learned from the co-
occurrences of voxels on fibers. We assume that if two voxels are on
Fig. 5. The graphical model of the parametric hierarchical Bayesian model. {oji} are the obs
hidden variables to inferred by Gibbs sampling. {cji}, the labels of points on fibers, are the d
the same bundle, they are connected by many fiber trajectories and a
model ϕk with large distribution on both voxels is learned.

Generative model
The generative model and an example are shown in Fig. 5. H is

a Dirichlet distribution over the codebook as a prior and {ϕk} are
sampled from Dirichlet(H). β is a Dirichlet distribution over bundles
as a prior. Each fiber j samples a multinomial πj from Dirichlet(β).
Each point i on fiber j chooses one of the bundles (cji∈{1,…,K} is the
bundle indicator) from a discrete distribution parameterized by πj
and samples its quantized voxel and orientation wji from the discrete
distribution (ϕcji) given by its bundle. In the given example, cji=1 and
erved input. H and β are hyperparameters to be specified. {ϕk}, {πji}, {cji} and {wji} are
esired output.

image of Fig.�5
image of Fig.�4


3 When mixture models are used for clustering data, a component in a mixture
model corresponds to a cluster of data. Data samples generated from the same
component are grouped into the same cluster.

4 As explained in the Dirichlet process section, ϕk∼Dirichlet(H) and β is sampled
from stick-breaking construction controlled by γ.

5 This is equivalent to sampling θji from Gj, θji∼Gj.
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wji is sampled from ϕ1. The observed 3D coordinate and orientation
oji is sampled from a kernel parameterized by wji in Eq. (1). The
generative process is summarized as following.

φk∼Dirichlet Hð Þ;

πj∼Dirichlet βð Þ;

cji∼Discrete πj

� �
;

wji∼Discrete φcji

� �
;

oji∼p oji jwji

� �
:

Inference
In this model, H and β are hyperparameters and are chosen as

uniform distributions (H=[h,…,h]1× L, β=[β0,…,β0]1×K, where L is
the size of the codebook). {oji} are observations. {ϕk}, {πj}, {cji} and
{wji} are hidden variables to be inferred. This model has higher data
likelihood if each fiber concentrates on only a few bundles instead of
uniformly distributes over all the bundles. So voxels often co-existing
on the same fibers will be grouped into one bundle. In this work,
collapsed Gibbs sampling is used to do inference. Collapsed Gibbs
sampling integrates out some hidden variables to make the sampling
converge much faster. During the sampling procedure, only {cji} and
{wji} are sampled alternatively while hidden variables {ϕk} and {πj} are
integrated out without being sampled. The efficiency of Gibbs
sampling is significantly improved when a fewer number of variables
need to be sampled. The posteriors of cji and wji are given as follows
(see details of proof in Appendix A),

p cji = k jfcj′ i′gj′ i′≠ji; wji

n o
;β;H

� �
∝

n−ji
jk + β0

n−ji
j + Kβ0

⋅
m−ji

kwji
+ h

m−ji
k + Lh

; ð4Þ

p wji joji; fwj′ i′gj′ i′≠ji; fcj′i′gj′i′≠ji; cji = k;H
� �

∝ p oji jwji

� � m−ji
kwji

+ h

m−ji
k + Lh

: ð5Þ

nj is the number of points on fiber j. njk is the number of points
assigned to bundle k on fiber j. mk is the number of points assigned to
bundle k in the whole data set.mkw is the number of points with voxel
and orientation indexw and assigned to bundle k. nj− ji, njk− ji,mk

− ji and
mkw

− ji are the statistics without counting point i on fiber j. Although
{ϕk} and {πjk} are not explicitly sampled during the Gibbs sampling
procedure, they can be estimated from any single sample,

ϕ̂kw =
mkw + h
mk + Lh

; π̂jk =
njk + β0

nj + Kβ0
:

In Eq. (4), the first term shows that point i tends to have the same
bundle label as the majority of other points on the same fiber. The
second term shows that the voxel and orientation index of point i
needs to fit the model of the bundle chosen. From this inference
procedure, we also can see that the voxels which are connected by
many fibers will eventually be grouped into the same bundle.

Nonparametric model

In our parametric model, the number of bundles (K) is manually
specified and it is difficult to know in advance. Using Dirichlet
processes (DP) as priors, we extend the parametric Bayesian model to
a nonparametric Bayesian model, which is an infinite mixture model.
In this new model, the number of bundles is learned driven by data.
Dirichlet process
We first introduce DP in this section. DP (Ferguson, 1973) is used

as a prior to sample probability measures. It is defined by a con-
centration parameter α, which is a positive scalar, and a base prob-
ability measure H. A probability measure G randomly drawn from
Dirichlet process DP(α,H) is always a discrete distribution,

G = ∑
∞

k=1
πkδϕk

; ð6Þ

which can be obtained froma stick-breaking construction (Sethuraman,
1994). In Eq. (6), ϕk is a parameter vector sampled from H, δϕk

is a Dirac
delta function centered at ϕk, and πk(∑∞

k = 1πk = 1) is a non-negative
scalar constructed by πk = π′

k∏k−1
l = 1 1−π′

l

� �
, π′

k∼Beta 1;αð Þ.
G can be used as a prior for an infinite mixture model. This is called

a Dirichlet process mixture (DPM)model. Let {wi} be a set of observed
data points. Under this infinite mixture model, wi is sampled from
a density function p(⋅ |θi) parameterized by θi. θi (which is one of the
ϕks in Eq. (6)) is sampled from G. Data points sharing the same
parameter vector ϕk are clustered together under this mixture model.
Given parameter vectors θ1,…,θN of N data points, the parameter
vector θN+1 of data point wN+1 can be sampled from a prior by
integrating out G,

θN+1 jθ1;…; θN ;α;H∼ ∑
K

k=1

nk

N + α
δθ⁎k +

α
N + α

H: ð7Þ

There are K distinct parameter vectors {θk⁎} k=1
K (identifying K com-

ponents3) among θ1,…,θN. nk is the number of points with parameter
vector θk. θN+1 can be assigned as one of the existing components
(wN+1 is assigned to one of the existing clusters) or can sample a
new component from H (a new cluster is created for wN+1). The
posterior of θN+1 is

p θN+1 jwN+1; θ1;…; θN ;α;H
� �

∝p wN+1 jθN+1
� �

p θN+1 jθ1;…; θN ;α;H
� �

: ð8Þ

It is likely for this DPM model to create a new component if existing
components cannot well explain the data. There is no limit to the
number of components. These properties make DP ideal for modeling
data clustering problems when the number of clusters is not well-
defined in advance.

Hierarchical Dirichlet processes mixture model
The extension of the parametric hierarchical Bayesian model

introduced in the Parametric model section with a DP mixture model
leads to our proposed hierarchical Dirichlet process mixture (HDPM)
model. The graphical representation of the HDPM model is shown in
Fig. 6. A prior G0 on the whole data set is sampled from a DP, G0∼DP
(γ,H), where the base measure H is a Dirichlet distribution.
G0 = ∑∞

k=1βkδϕk
is a infinite mixture in which components

{ϕk} k=1
∞ (multinomial parameters) are models of bundles and β=

{βk} k=1
∞ is a prior over bundles.4 For a fiber j, a prior Gj is sampled

from a DP, Gj=DP(α,G0). It was shown that in HDPM all the Gj

share the same set of components {ϕk} as G0. However, they have
different weights πj over {ϕk}: Gj = ∑∞

k=1πjkδϕk
, πj∼Dirichlet(β)

(Teh et al., 2006). For a point i on fiber j, a bundle indicator cji is
sampled from Discrete(πj) and a multinomial parameters θji=ϕcji is
chosen as the model of bundle cji.5 Its index of voxel and orientation
wji is sampled from the model of a bundle, wji∼Discrete(θji). Ob-
servation oji is sampled from p(oji|wji). Optionally, concentration



Fig. 6. Graphical model of our HDPM model. {oji} are the observed input. a1, b1, a2, b2,
and H are hyperparameters to be specified. α, β, γ, {ϕk}, {πj}, {cji} and {wji} are hidden
variables to inferred by Gibbs sampling. {cji} are the desired output.

295X. Wang et al. / NeuroImage 54 (2011) 290–302
parametersγ andα are sampled fromgammapriors,γ∼Gamma(a1,b1),
α∼Gamma(a2,b2).6 H, a1, a2, b2 and b2 are hyperparameters. The
clustering performance is quite robust to the choice of their values in
a large range. {oji} are observations. The remaining are hidden variables
to be inferred. A fiber j is assigned to a bundle k with maximum πjk.
Comparing Figs. 5 and 6, there is correspondence between parameters
of the twomodels, except that the nonparametric model has an infinite
number of bundle models {ϕk} and its mixture weights β and πj have
infinite components.

The size of voxels determines the scale of the structures to be
learnt. Our framework can be extended to multiscale clustering. First
cluster fibers using a large size of voxels so that bundles correspond to
structures at a large scale. Then each bundle can be further clustered
using a smaller size of voxels, showing structures at a finer scale.
Multiscale clustering makes it easier for experts to identify white
mater structures across different scales.

Inference
We use the collapsed Gibbs sampling method proposed in (Teh

et al., 2006), which is based on Chinese restaurant franchise (Aldous,
1983), for inference. During the sampling procedure, suppose that
K models of bundles (clusters) have been created and assigned to
data. Then,

G0 = ∑
K

k=1
βkδϕk

+ βuGu; Gu∼DP γ;Hð Þ: ð9Þ
6 As the increase of hierarchical levels, hierarchical Bayesian models become less
sensitive to hyperparameters (Gelman et al., 2004). By adding gamma priors over α
and γ, α and γ do not need to be specified. Our model is more robust to the choice of
a1, a2, b1 and b2 than directly tuning α and γ.
Algorithm 1. Collapsed Gibbs sampling for our HDPM model
1: Initialization assign all the points as one cluster.
2: repeat
3: step1: sample bundle indicator cji using Eq. (10).
4: step2: sample voxel and orientation index wji using Eq. (5).
5: step3: sample β using the approach proposed in (Teh et al., 2006).
6: step4 (optional): sample concentration parameters α and γ using the approach

proposed in (Teh et al., 2006).
7: until converge or exceed the maximum iteration number

The Gibbs sampling scheme proposed in (Teh et al., 2006) integrated
out {πjk} and {ϕk} without sampling them. The posterior of cji is given
by

p cji jfcj′ i′gj′ i′≠ji; wji

n o
;β;α

� �
∝

n−ji
jk + αβk

� �
⋅
n−ji
kwji

+ h

n−ji
k + Lh

; k∈f1;…;Kg

αβu⋅
1
L
; k is new

8>>>><
>>>>:

ð10Þ

This posterior allows us to create a new bundle if none of the
existing bundles fits the data well. The posteriors of β, γ and α
involve more details of the Chinese restaurant franchise. They can
be found in (Teh et al., 2006). The posterior of wji is the same as
Eq. (5). The sampling algorithm is summarized in Algorithm 1.
Evaluating the convergence of Gibbs sampling is a complex issue. In
practice, we stop iterations when the data log likelihood stabilizes.
Let likt be the data log likelihood after t iterations. The stopping
criterion is ∥(likt− lik(t− 100))/ likt ∥b0.1%. The maximum iteration
number is set as 5000.

The space complexity of our approach is O(M). The time com-
plexity of each Gibbs sampling iteration is O(M). It is difficult to
provide theoretical analysis on the convergence of Gibbs sampling. In
practice, we stop burn-in7 when the data likelihood converges. From
our empirical observation, the time complexity of our approach is
much lower than O(M2). Recently some more efficient inference
approaches, such as variational inference (Blei and Jordan, 2006), and
parallel sampling (Asuncion et al., 2008), have been proposed and
applied to DPM and HDPM models. In the future work, we will study
how to improve the efficiency of inference using these schemes.

Clustering new data

In some applications, fiber bundles of multiple subjects need to be
compared. For that purpose, we first collect a training set which
includes some old subjects and learn bundle models from it in an
unsupervised way. Then the pre-learned fiber bundles are used as
priors to cluster fibers of each of the new subjects sequentially.
Compared with alternative approaches, this approach has the
following advantages. 1) If fibers of each new subject are clustered
independently without using the models pre-learned from the
training data, the correspondence between fiber bundles of different
subjects are unknown unless it is manually specified. In our approach,
the correspondence is automatically established since models of the
training data are used as priors to cluster new data. 2) If both old and
new subjects are merged into one data set and clustered together,
although correspondence can be automatically obtained, the compu-
tational cost is high when the subject number is large. In contrast, our
approach clusters new subjects one by one and saves computational
cost. 3) Instead of “clustering” fibers of new subjects, alternatively one
could fix the bundle models G0 and the number of clusters learned
from the training set, and use them to “classify” new fibers. However,
the fixed models may not be able to fit the new data well. In our
approach, pre-learned bundle models are only used as priors, new
7 Burn-in is to throw away samples generated from the early iterations of Gibbs
sampling before it converges.
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Fig. 7. Graphical model of our HDPM model for clustering new data. {oji} are the observed input. a2, b2, γ and H are hyperparameters to be specified. β
o

and {ϕk
o} are models learned

from the old training data and they are fixed when clustering new data. {ϕk
n}, βn, {πj}, {cji} and {wji} are hidden variables to inferred by Gibbs sampling. {cji} are the desired output.
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bundlemodels will be updated given the new data observed. 4) Lastly,
using pre-learned models as priors can improve the convergence on
the new data, since Gibbs sampling starts from a better position than
random initialization.

Our HDPM model for clustering new data is shown in Fig. 7.
Suppose that Go

0 = ∑Ko

k = 1β
o
kδϕo

k
+ βo

uG
o
u in Eq. (9) has been learnt

from the old data and Ko clusters are created. A prior G0
n on the new

data is to be learnt. Different from the model shown in Fig. 6, where
G0 is generated from a DP with a flat base measure H, G0

n is generated
from DP(γ,F), where the base measure F is constructed from G0

o and
includes models learnt from the old data.

F = ω ∑
Ko

k=1
β̂o
kδϕn

k
+ 1−ωð ÞH ð11Þ

F is composed of two parts: the models learned from the old data and
a flat prior.ω is a scalar between 0 and 1. fβ̂n

kg are normalized weights
in G0

n,

β̂o
k =

βo
k

∑Ko

k′=1β
o
k′
:

This assumes that before observing any new data, there already exist
Ko models of bundles {ϕk

n}k=1
Ko

. However, instead of letting ϕk
n be equal

to ϕk
o, we sample ϕk

n from a Dirichlet distribution choosing ϕk
o as prior,

ϕn
k ∼Dirichlet ξ⋅ϕo

k + H
� �

;

where ξk is a positive scalar. Thus the models of bundles can adapt to
the new data instead of being fixed.

The choice of γ, ω and ξ controls how much the models learned
from the old data affect the clustering of the new data.8 The two
8 There is a principled way to select γ, ω and ξ. See details in Chapter 4 of (Wang,
2009).

Fig. 8. Tractography errors which generate short broken fibers in (a) and fibers crossing
two bundles in (b).
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extreme cases are that the pre-learnt models have no effect on
clustering the new data (ω=0, ξ=0) and that the models learned
from the new data are exactly the same as those learned from the old
data (γ=∞, ω=1, ξ=∞).

Suppose there are Kn models of bundles assigned to the new data.
Then an explicit construction of G0

n is given by

Gn
0 = ∑

Ko

k=1
βn
kδϕn

k
+ ∑

Kn

k=Ko +1
βn
kδϕn

k
+ βn

uG
n
0u: ð12Þ

Models {ϕk
n} k=1

Ko
have been seen in the old data. They have priors

Dirichlet(ξ ⋅ϕk
o+H) and are updated using the new data. {ϕk

n} k=Ko+1
Kn

are new models not found in the old data. They are sampled from a
flat prior Dirichlet(H). The remaining parts are the same as described
in Hierarchical Dirichlet processes mixture model section.

Discussion

Tractography results may have significant errors due to data
quality and the tractography algorithms used. Two types of errors
which occur frequently are shown in Fig. 8. Our tractography
segmentation algorithm is more robust to these errors. In Fig. 8(a),
a short broken fiber is generated because tracking terminates at a
voxel of low FA value. If Euclidean distance of shape descriptors as
Fig. 9. Compare the results of two clustering approaches with the ground truth on a data
approach. (c) Spectral clustering when the number of clusters is 6. (d)Spectral clustering w
approach. (f) The accuracies of completeness and correctness of spectral clustering and our
in (Brun et al., 2004) is used, this fiber has large distance to fibers
in both bundle 1 and bundle 2, because its shape is quite different
from other fibers. If Hausdorff distance (O'Donnell and Westin, 2007)
is used, this fiber will have small distance to fibers in both bundles,
because it is close to other fibers within this local region. In our
approach, each bundle has a distribution over space and orientations.
Although this fiber is broken by tracking error, it better fits the model
of bundle 1 than bundle 2. In Fig. 8(b), a fiber crosses two bundles
because of tracking errors. Its shape is quite different from the fibers
in these two bundles. The existence of this kind of fibers may lead to
the two bundles merging into one cluster under some algorithms. In
our approach, part of points on this fiber are assigned to bundle 1 and
others are assigned to bundle 2. The models of the two bundles can be
well learned without being affected by errors.

Results

Results on real data sets

We evaluate our approach on four DTI data sets. Quantitative
evaluation is done on the first two data sets. The acquisition and
preprocessing of the DTI data sets are the same as the Population II
data set in (O'Donnell and Westin, 2007). DTI images were acquired
using a 1.5 TMR scanner with 30 directions of diffusionweighting and
b = 700s =mm2. The field of view, the size of the acquisition matrix
set with 3152 fibers. Two views are plotted for each result. (a) Ground truth. (b) Our
hen number of clusters is 7. (e) Anatomical labels of the fiber bundles obtained by our
approach (HDPM).

image of Fig.�9


298 X. Wang et al. / NeuroImage 54 (2011) 290–302
acquisition matrix, and the slice thickness were 240mm×240mm/
96×96/2.5mm. Whole brain tractography was performed using
Runge–Kutta order two integration, with the following parameters:
seeding threshold Tseed of linear anisotropy measure 0.25, stopping
threshold Tstop of linear anisotropy measure 0.15, step size 0.5 mm,
andminimum length Tlength of 25 mm. Group registration of subject FA
Fig. 10. Compared results of our approach and the approach proposed in (O'Donnell and W
obtain anatomical structures. (a) shows the obtained anatomical structures by merging clust
clustering (totally 200 clusters). Colors are used to distinguish clusters. (b) plots the freque
sampling with random initializations.
images was performed using the congealing algorithm (Zollei et al.,
2005). See more details of experimental settings in (O'Donnell and
Westin, 2007). As discussed in Feature space section, 3D space of the
brain is uniformly quantized into voxels. The size of each voxel is
12.5mm×12.5mm×12.5mm. We choose the hyperparameters in
Fig. 6 as a1=a2=b1=b2=1, h=0.3. We do bilateral clustering.
estin, 2007), in which experts manually merged the clusters from spectral clustering to
ers from our approach (totally 27 clusters) and those by merging clusters from spectral
ncy of the numbers of clusters learnt by our approach when running 50 trials of Gibbs

image of Fig.�10


Fig. 11. An example of multiscale clustering. The spatial range of the whole brain is 240mm ×240mm×240mm. (a): The clustering result when the space is quantized into voxels of
size 12.5mm×12.5mm×12.5mm. The bundles correspond to structures at a large scale. (b): One bundle from (a). (c): The space is quantized into voxels of size 3.5mm ×
3.5mm×3.5mm and the bundle in (b) is further clustered into smaller bundles corresponding to structures at a finer scale.
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Data set I
The first data set has 3152 fibers and is a subset of whole brain

tractography results on a subject. They are manually labeled to six
anatomical structures as ground truth. Figs. 9(a)–(d) plots the
clustering results of our approach and a spectral clustering approach,
compared with the ground truth. Colors are used to distinguish
clusters. Since clusters may be permuted in different results, the
meaning of colors is not consistent across different results. The
spectral clustering approach uses the mean of closest distances (a
variation of Hausdorff distance) as the distance measure, which was
found the most effective in previous studies (Moberts et al., 2005;
O'Donnell and Westin, 2007). The clustering result of our approach
is close to the ground truth. Although the correct number of clusters
has been set, two anatomical structures are merged in the result of
the spectral clustering approach. A few outlier fibers form a small
cluster. As the number of clusters increases to 7, the two anatomical
Fig. 12. Cluster fibers acro
structures still cannot be separated, instead, another structure splits
into two clusters.

There are two important aspects, called correctness and complete-
ness, to be considered when comparing a clustering result with the
ground truth (Moberts et al., 2005). Correctness implies that fibers of
different anatomical structures are not clustered together. Complete-
ness means that fibers of the same anatomical structures are clustered
together. Putting all the fibers into the same cluster results in 100%
completeness and 0% correctness. Putting every fiber into a singleton
cluster results in 100% correctness and 0% completeness. To measure
correctness, we randomly sample 5000 pairs of fibers which are in
different anatomical structures according to the ground truth and
calculate the accuracy (rcorrect) that they are also in different clusters
according to the clustering result. To measure completeness, we
randomly sample 5000 pairs of fibers which are in the same
anatomical structures and calculate the accuracy (rcorrect) that they
ss multiple subjects.
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Fig. 13. Data log likelihoods of two data sets with 1000 fibers and 60,000 fibers with
different number of Gibbs sampling iterations.
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are also in the same clusters. The accuracies of our approach and
spectral clustering are plotted in Fig. 9(f). The horizontal axis is the
number of clusters manually specified for spectral clustering. Since
our approach (HDPM) automatically decides the number of clusters,
which converges to six on this data set, it only has two points instead
of two curves corresponding to correctness and completeness in this
plot. It is observed that the correctness and completeness of spectral
clustering are significantly affected by the chosen cluster number,
which is hard to know in advance. As we increase the number of
clusters from 2 to 25, the correctness of spectral clustering increases
and its completeness decreases. When spectral clustering chooses the
number of clusters as 6, which is the ground truth, both completeness
and correctness of our approach are much better than those of
spectral clustering. In order to achieve the same correctness as our
approach, spectral clustering has to choose a cluster number larger
than 19. In that case, its completeness is almost 40% lower than ours.
In order to achieve a higher completeness than ours, spectral
clustering has to choose fewer than 6 clusters. In that case, its
correctness is almost 20% lower than ours. These observations show
that our approach outperforms spectral clustering.

Data set II
We compare our approach with the approach proposed in

(O'Donnell and Westin, 2007) on a larger data set with 12,420 fibers,
which is also a subset of whole brain tractography results on a subject.
In (O'Donnell andWestin, 2007), fibers were first grouped into a large
number of clusters (200) and then experts merged these clusters to
obtain anatomical structures. In this data set there are 10 anatomical
structures. Our approach clusters these fibers into 27 clusters. We also
manually merge them to these 10 anatomical structures, however
its takes much less effort than (O'Donnell andWestin, 2007) since the
number of clusters is smaller. Fig. 10 shows some of the anatomical
structures obtained by the two approaches. 83.2% fibers have
consistent anatomical labels according to the two results. To evaluate
how our approach is sensitive to initialization, we run 50 trials of
Gibbs sampling with random initializations. Fig. 10(g) plots the
frequency of the numbers of clusters learnt from data.

Data set III
Fig. 11 shows an example of multiscale tractography segmentation

on 30,125 fibers generated by whole brain tractography on one
subject. When we choose the voxel size as 12.5mm×12.5mm×
12.5mm, the fibers obtained by full brain tractography are clustered
into 35 bundles. These bundles correspond to structures at a large
scale. Choosing a smaller voxel size of 3.5mm×3.5mm×3.5mm, one
of the bundles shown in Fig. 11(b) is further clustered into smaller
bundles corresponding to structures at a finer scale. So far it is still not
clear whether the obtained hierarchical fiber bundles well correspond
to hierarchical white matter structures. It requires ground truth on
white matter structures at a finer scale, which is hard to obtain at the
current stage, for further evaluation. As observed in Fig. 11(b), some
fibers diverging from the bundle are separated through clustering
at a finer scale. They might be axons diverging from bundles and
innervating the cortex. However this observation needs to be verified
by further biomedical study.

Data set IV
Fig. 12 shows the results of clustering fibers across multiple

subjects. The old training data has 63,751 fibers generated by whole
brain tractography on two subjects. The models of bundles are learnt
from all these fibers. The new data has 61,572 fibers from two new
subjects. The major purposes of using the models learned from the
training data as priors are to automatically establish the correspon-
dence between bundle structures in the old and new data and to
speed up the convergence. If the learned models are not used as
priors, 94.2% fibers of the new data have consistent labels as using
those priors.

Computational cost
Since it is difficult to provide theoretical justification on the time

complexity of our approach, we provide some empirical observation
on the computational cost of clustering data sets of different sizes.
Running on a computer with 3 GHz CPU, it takes less than half minute
to cluster 1000 fibers and around four hours to cluster 60,000 fibers.
This ratio of computational costs is lower than (60,000/1000)2. We
empirically observe that the time complexity of our approach is
lower than O(M2). The data log likelihoods of the two data sets with
different number of Gibbs sampling iterations are plotted in Fig. 13.
The data log likelihoods of the two data sets converge after 400
iterations and 4000 integrations respectively. With priors of pre-
learned bundles models, clustering fibers of new subjects converges
faster. For examples, it takes 54 min for cluster 61,572 new fibers
and the data log likelihoods converge after 800 iterations.

Results on synthetic data sets

We also do experimental evaluation on fiber data synthesized
by the approach proposed in (Close et al., 2009) using their default
parameters. The results are shown Fig. 14. Fig. 14(b) shows the
accuracies of correctness and completeness of spectral clustering and
our approach when different number of bundles (from 5 to 20) are
simulated. For spectral clustering, the number of clusters is manually
set as ground truth. Even though our approach automatically chooses
the number of clusters, it outperforms spectral clustering. The number
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Fig. 14. Results on synthetic data. (a) Fibers synthesized by the approach proposed in (Close et al., 2009). (b) Accuracies of correctness and completeness of spectral clustering and
our approach when different number of bundles are simulated. (c) Accuracies of correctness and completeness of spectral clustering and our approach when the number of bundles
is ten and the simulated fibers are broken with different probabilities from 0 to 1. (d) The number of clusters learned on the new data set by our approach, when the structures of the
new data set deviate from those of the training set by 0o–20o.
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of synthesized fibers ranges from 240 to 694. As the number of
bundles increases, the structures of bundles become more compli-
cated with more overlaps, and thus the performance drops.

As discussed in Discussion section, two types of errors occur
frequently in tractography results: (1) broken fibers are generated
because tracking terminates at a voxel with a low FA value; (2) a fiber
crosses two bundles because of tracking errors. We simulate these
two types of errors by randomly splitting a fiber with probability rb
(0≤ rb≤1) and associating a broken fiber with a nearby broken fiber
incorrectly with probability rs (rs=0.2). As rb increases, both the
two types of errors increases. Fig. 14(c) shows that our method
significantly outperforms spectral clustering with the existence of
these errors.

In order to study the effect when there is mismatch between the
bundle structures of the training data and the new data, we
synthesize training data and new data with identical bundle
structures and rotate the new data around the center by B degrees.
The number of bundles is 10 in both sets. The mismatch increases
with B. Fig. 14(c) shows that if the pre-learned models do not match
the new data well, more clusters which do not correspond to the
training data will be discovered from the new data and the cluster
number on the new data becomes larger than the ground truth. In
this case, the accuracies of correctness and completeness on the new
data may decrease if mismatched bundle models are added as priors.
For example, when B=20o, the correctness and completeness are
98.02% and 87.78% if the models learned from the training data are
used as priors, while they are 99.44% and 95.35% without these
priors.
Conclusion and discussion

We propose a nonparametric Bayesian framework for tractogra-
phy segmentation. The number of clusters is automatically learnt
from data through DP. This method has much lower space complexity
than distance-based clustering methods can cluster a very large set
of fibers. In the future work, we will use our model to study the
groups difference between normal and diseased populations under a
Bayesian framework. This approach also has some limitations. Since
the clustering is based on the spatial affinity and connectivity of fiber
trajectories, the biomedical principles and justification behind it are
not clear. As other fully automatic clustering methods, it does not
allow human intervention. In a specific application it may not be able
to provide fiber bundles desired by users. In the future work, we will
extend our Bayesian model to include biomedical and anatomical
knowledge input by users as priors to guide tractography segmenta-
tion.When data sets are large in size, our algorithm is still not efficient
enough for real time operation. The efficiency of inference can be
improved using variational methods and parallel sampling.
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Appendix A

The posteriors of cji and wji in Eqs. (4) and (5) are given as follows.
In these posteriors hidden variables {πj} and {ϕk} are integrated out to
improve the sampling efficiency.

p cji = k jfcj′ i′gj′ i′≠ji; fwjig;β;H
� �

∝p cji = k; fcj′i′gj′ i′≠ji; fwjigjβ;H
� �

∝∫πj
∫ϕk

p cji = k; fcj′ i′gj′ i′≠ji; fwjigjπk;ϕk;β;H
� �

p πk;ϕk jβ;Hð Þdπjdϕk

∝∫πj
p cji = k jπj

� �
p fcj′ i′gj′ i′≠ji jπj

� �
p πj jβ
� �

dπj

∫ϕk
p wji jϕk

� �
p fwj′ i′gcj′ i′ =k;j′ i′≠ji jϕk

� �
p ϕk jHð Þdϕk

=
n−ji
jk + β0

nj + Kβ0
⋅
m−ji

kwji
+ h

m−ji
k + Lh

ð13Þ

Since p(πj|β) (Dirichlet distribution) is a conjugate prior of p(cji=k|πj)
and p({cj′i′} j′i′≠ ji|πj) (multinomial distributions) and p(ϕk|H) (Dirichlet
distribution) is a conjugate prior of p(wji|ϕk) and p({wj′i′} cj′i′=k, j′i′≠ ji|ϕk)
(multinomial distributions), the two integrations in Eq. (13) has close
form solutions. Similarly, we can compute the posterior of wji

integrating out ϕk.

p wji joji; fwj′ i′gj′ i′≠ji; fcj′ i′gj′ i′≠ji; cji = k;H
� �

∝p oji jwji

� �
p wji jfwj′ i′gj′ i′≠ji; fcj′ i′gj′ i′≠ji; cji = k;H
� �

∝p oji jwji

� �
∫ϕk

p wji jϕk

� �
p fwj′ i′gcj′ i′ =k;j′ i′≠ji jϕk

� �
p ϕk jHð Þdϕk

∝p oji jwji

� �m−ji
cjiwji

+ h

m−ji
cji + Lh

:

ð14Þ
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