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Abstract

Recent advances in pedestrian detection are attained by
transferring the learned features of Convolutional Neural
Network (ConvNet) to pedestrians. This ConvNet is typ-
ically pre-trained with massive general object categories
(e.g. ImageNet). Although these features are able to han-
dle variations such as poses, viewpoints, and lightings, they
may fail when pedestrian images with complex occlusions
are present. Occlusion handling is one of the most impor-
tant problem in pedestrian detection. Unlike previous deep
models that directly learned a single detector for pedestrian
detection, we propose DeepParts, which consists of exten-
sive part detectors. DeepParts has several appealing prop-
erties. First, DeepParts can be trained on weakly labeled
data, i.e. only pedestrian bounding boxes without part an-
notations are provided. Second, DeepParts is able to han-
dle low IoU positive proposals that shift away from ground
truth. Third, each part detector in DeepParts is a strong de-
tector that can detect pedestrian by observing only a part
of a proposal. Extensive experiments in Caltech dataset
demonstrate the effectiveness of DeepParts, which yields a
new state-of-the-art miss rate of 11.89%, outperforming the
second best method by 10%.

1. Introduction

Pedestrian detection has been studied extensively in re-
cent years [4, 7, 6, 1, 2, 29, 42] and has many applications
such as video surveillance and robotics. While pedestrian
detection has achieved steady improvements over the last
decade, complex occlusion is still one of the obstacles. Re-
ferring to a recent survey [8], around 70% of the pedestrians
captured in street scenes are occluded in at least one video
frame. For example, the current best-performing detector
SpatialPooling+ [27] attained 75% reduction of the average
miss rate over the VJ detector [34] on Caltech [8] test set
without occlusion. When heavy occlusions are present, it

Figure 1. Pedestrian detection results on Reasonable ∪
HeavyOcclusion subsets, where pedestrians are larger than 49
pixels in height and have at least 20% body part visible. Green,
red, and blue represent true positives, false positives, and missing
positives, respectively.

only attained 21% improvement over VJ 1.
Current pedestrian detectors for occlusion handling can

be generally grouped into two categories, 1) training spe-
cific detectors for different occlusion types [36, 18] and 2)
modeling part visibility as latent variables [10, 26, 22, 23,
9]. In the first category, constructing specific detector re-
quires the prior knowledge of the occlusion types. For ex-
ample, according to the statistics of the occlusion patterns
in traffic scenes, [18] trained a series of biased classifiers for
bottom-up and right-left occlusions. In the second category,
[23, 22] divided pedestrian into several parts and inferred
their visibility with latent variables. Although these meth-
ods achieved promising results, manually selecting parts
may not be the optimal solution and may fail when han-
dling pedestrian detection in other scenarios beyond traf-
fic scenes, such as crowded scenes and market surveillance,
where occlusion types change.

Inspired by [18], we introduce the idea of constructing
a part pool that covers all the scales of different body parts

1http://www.vision.caltech.edu/Image_Datasets/
CaltechPedestrians/rocs/UsaTestRocs.pdf
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Figure 2. Complementary parts on Caltech pedestrian dataset and
their normalized weights (i.e. importance).

and automatically choose important parts for occlusion han-
dling. At the training stage, each part detector is learned by
fine-tuning ConvNet features, which are pre-trained on Im-
ageNet. At the testing stage, we design a shifting handling
method within a ConvNet. This method handles the prob-
lem that positive proposal windows usually shift away from
their corresponding ground truth bounding boxes. More-
over, the part selection is determined by data and the effec-
tiveness of the part pool can be fully explored. Fig. 2 shows
6 body parts which are significant in the Caltech pedestrian
dataset. They function complementarily to handle complex
occlusions.

DeepParts has four main contributions. (1) We con-
struct an extensive part pool where different complemen-
tary parts can be automatically selected in a data driven
manner. The selected parts can be adopted to different sce-
narios or different datasets. (2) To our knowledge, we are
the first to extensively explore how single part detector and
their ensemble based on ConvNets contribute to pedestrian
detection. In experiments, single part detector can achieve
state-of-the-art performance while only observing a part of
the proposal window, showing the robustness of DeepParts
against occlusions. (3) We propose a novel method to han-
dling proposal shifting problem. (4) We show that with
complementary part selection, a new state-of-the-art miss
rate of 11.89% can be achieved on the Caltech reasonable
set.

1.1. Related Work

We review related works in three aspects.
Part-Based Pedestrian Detectors One stream of part-

based approaches [20, 19, 9, 37] firstly trained part detec-
tors in a fully supervised manner and then combined their
outputs to fit a geometric model. For example, [20, 19] re-
quired part labels and were restricted to a limited number
of manually-designed parts. Enzweiler et al. [9] utilized the
depth and motion information to determine the occlusion
boundaries. Wu et al. [37] assumed that the head of a pedes-
trian is visible and required a complex Bayesian framework
to combine different components. In contrast, our method
does not need part annotations and can automatically select
complementary parts (components of human body) from
a large part pool.Another stream of part-based models fo-
cused on unsupervised part mining, which does not require

part labels. Felzenszwalb et al. [10] proposed Deformable
Part Model (DPM), which learned a mixture of local tem-
plates for each body part to handle pose variations. Lin et
al. [16] proposed a promising and effective framework by
incorporating DPM into And-Or graph. Recently, Girshick
et al. [13] reformulated DPM as ConvNet. DPM needs to
handle complex configurations while our method is much
simpler.

Occlusion Handling Some recent works [18, 31, 24] fo-
cused on handling specific types of pedestrian occlusion.
For example, the Franken-classifiers [18] learned a small
set of classifiers, where each one accounts for a specific
type of occlusion. In this work, we extend this idea by con-
structing an extensive part pool. Unlike [18] that the parts
were pre-defined, our complementary parts are automati-
cally determined by data and may vary in different scenar-
ios or datasets. In [31, 24], occlusions caused by overlaps
between two pedestrians were handled. Specifically, Tang
et al. [31] proposed a pedestrian detector tailored to vari-
ous occlusion levels, while Ouyang et al. [24] employed a
probabilistic framework to model the relationship between
the configurations estimated by single- and multi-pedestrian
detectors. With the large part pool, our method can cover
more occlusion patterns.

Deep Models Deep learning methods can learn high
level features to aid pedestrian detection. For instance,
Ouyang et al. [23, 22] introduced a part deformation layer
into deep models to infer part visibility. By introducing
switchable layers to learn both low-level features and high-
level semantic parts, SDN [17] achieved further improve-
ment. Because the receptive field of higher layers in Con-
vNet is large (sometimes covers most of the input patch),
modeling part visibility in a single ConvNet as these meth-
ods can not explicitly learn visual patterns for each part and
may suffer from part co-adaption. Tian et al. [32] mod-
eled detection task together with attribute prediction tasks
within a single deep model. Finally, Hosang et al. [14]
demonstrated the effectiveness of the R-CNN pipeline [12]
in pedestrian detection and achieved top performance on
Caltech [8] and KITTI[11]. We follow this framework to
train our strong part detectors. Moreover, unlike Part-Based
R-CNN [41], our DeepParts does not need part annotations
in training.

Another series of methods [7, 6, 21, 42, 43] focusing on
Channel Features and feature selection also achieved state-
of-the-art performance for pedestrian detection, but they are
not specially designed for occlusion handling.

2. Training Part Detectors
We take several steps to build our part-based pedestrian

detector. Firstly, we construct a part pool, where the parts
cover the full body of pedestrian at different positions and
scales. We then learn a detector for each of the part. A



(a) part (1,1,2,2,1) (b) part (1,5,3,2,35)

Figure 3. Part prototype examples, (x, y, w, h, i) is defined in
Eqn.(2) (a) head-left-shoulder part with 2 grids in height and
width; (b) leg part with 2 grids in height and 3 grids in width.

method is further designed to handle shifting problem of
proposal windows. Finally, we infer the full body score over
complementary part detectors.

2.1. Part Pool

Occlusions may present at different body parts and have
various patterns. For instance, the left- or right-half body
may be occluded by a tree, and the lower-half body may
be occluded by a car. Thus, we construct an extensive part
pool, containing various semantic body parts.

We consider pedestrian as a rigid object and define a hu-
man body grid of 2m × m, where 2m and m indicate the
numbers of cells in horizontal and vertical direction, respec-
tively. Each cell is a square and has equal size. Furthermore,
we ensure each part to be a rectangle. The scales for parts
are defined as

S = {(w, h)|Wmin ≤ w ≤ m,Hmin ≤ h ≤ 2m,

w, h ∈ N+},
(1)

where w and h indicate the width and height of a part re-
spectively, in terms of the number of cells they contain.
Wmin and Hmin are used to avoid subtle part since we fo-
cus on middle-level semantic part. Then, for each (w, h) ∈
S, we slide a h×w window over the human body grid with
step size s, to generate parts at different positions. The en-
tire part pool could be expressed as follows

P = {(x, y, w, h, i)|x, y ∈ N+, (w, h) ∈ S, i ∈ I}, (2)

where x and y are the coordinates of the top-left cell in the
part and i is a unique id. Specifically, the part representing
the full body is defined as (1, 1,m, 2m, ifull).

Large m results in a large part pool, which may cause
more computations in the training and testing stages. Also,
small values of Wmin and Hmin result in subtle parts, such
as Wmin = 0.1 × m. To avoid the above issues, we have
m = 3, Wmin = 2, Hmin = 2, and s = 1 in our imple-
mentation, resulting in a part pool with 45 prototypes. Two
examples regarding the parts of head-left-shoulder and leg
are shown in Fig.3.
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Figure 4. Using head-shoulder part prototype as an illustration for
training part detectors. (1) data: we extract corresponding regions
within negative proposals as negative training samples; we com-
pute the visible map of each ground truth box, and extract the cor-
responding region as a positive sample only if the part template is
fully covered by the visible map. (2) ConvNet: a part detector can
be any deep models, such as AlexNet, Clarifai and GoogLeNet.

2.2. Training

For each part, we train an independent ConvNet clas-
sifier. This leads to totally |P | models, where | · | is the
counting operator.

Training Data The size of training dataset is crucial
for ConvNets. In our experiments, we use Caltech dataset
[8], which is the largest pedestrian benchmark that consists
of ∼250k labeled frames and ∼350k annotated bounding
boxes. Instead of following the typical Reasonable setting,
which uses every 30th image in the video and has ∼1.7k
pedestrians for training, we utilize every frame and em-
ploy ∼50k pedestrian bounding boxes as positive training
patches. Proposals are obtained by LDCF [21]. Negative
patches are the proposed windows that have IoU < 0.5 with
the ground truth bounding boxes.

Part Specific Patch Generation As shown in Fig.4, we
take the head-shoulder detector as an example, to illustrate
how to generate the training data. (1) Given the definition of
a part, we consider the corresponding region within a neg-
ative proposal (i.e. patches containing objects/backgrounds
other than pedestrians) as the negative sample. (2) Each
pedestrian is annotated with two bounding boxes (BBs),
which denote the visible part Bvis (in green) and full body
Bfull, respectively. We divide the full body Bfull into
2m × m cells and compute the visible ratio of each cell.
Then we obtain the visible map by thresholding on the vis-
ible ratio. If the visible cells of a ground truth can cover
the cells of a part, we extract the corresponding region of
this part as a positive sample. In our implementation, the
threshold for computing the visible map is 0.4.



Pre-training It has been demonstrated in R-CNN [12]
that fine-tuning a pre-trained ConvNet on ImageNet classi-
fication task on object detection and segmentation data can
significantly improve the performance. Particularly, the pa-
rameters learned at the pre-training phase are directly used
as initial values for the fine-tuning stage. Similar strategy
can be directly adopted to fine-tune the generic ConvNet
image classification models for part recognition. The main
disparity between the pre-training and fine-tuning tasks is
the type of input data. Image classification task employs the
full image or the entire object as input, which contains rich
context information while part recognition task can only ob-
serve a middle-level patch of a part.

To understand how to narrow the above disparity, we in-
vestigate three popular deep models and three pre-training
strategies as below. Three deep models are AlexNet [15],
Clarifai [39], and GoogLeNet [30], which are the best-
performing models of the ImageNet [5] classification chal-
lenge in the past several years. AlexNet and Clarifai have
∼60 million parameters and share similar structures, while
GoogLeNet uses 12× fewer parameters but is much deeper
than the first two models. Our framework is flexible to in-
corporate other generic deep models.

Three pre-training strategies include (1) no pre-training,
i.e. randomly initializing model parameters with Gaussian
distribution (strategy 1), (2) pre-training the deep models
by using the ImageNet training data with image-level anno-
tations of 1000 classes, i.e. taking the full images as input,
such as [14] (strategy 2), and (3) pre-training the deep mod-
els by using ImageNet training data with object-level anno-
tations of 1000 classes [25], i.e. taking the cropped object
patches as input (strategy 3).

Fine-tuning For each part prototype, we use the part
specific patches to fine-tune our part detectors. We replace
the last d×n classification layer with d×2 randomly initial-
ized part classifier (d and n indicate the feature dimension
and the number of pre-training classes, respectively). In our
implementation, we uniformly sample 16 positive and 48
negative windows to construct a mini-batch. Experiments
show that fine-tuning for 10000 iterations with a learning
rate of 0.001 is sufficient to converge.

2.3. Handle Shifting in Deep Model

In pedestrian detection, the localization qualities (i.e.
whether the window is tight or not) of the proposals are im-
portant for the recognition stage. Pedestrian detectors usu-
ally suffer from poor localization quality of the proposals.
As reported in [14], the best proposal method SpatialPool-
ing+ [27] recalls 93% pedestrians with 0.5 IoU threshold
while only recalls 10% with 0.9 IoU threshold. Shifting is
one of the major reasons that cause low IoU. As shown in
Fig 5(a), shifting a ground truth bounding box by 10% on
horizontal or vertical direction leads to 0.9 IoU, which is

type filter/stride output map size
no extension
227× 227

extended by 32n
(227 + 32n)× (227 + 32n)

conv1 11× 11/4 55× 55 (55 + 8n)× (55 + 8n)
pool1 3× 3/2 27× 27 (27 + 4n)× (27 + 4n)
conv2 5× 5/1 27× 27 (27 + 4n)× (27 + 4n)
pool2 3× 3/2 13× 13 (13 + 2n)× (13 + 2n)
conv3 3× 3/1 13× 13 (13 + 2n)× (13 + 2n)
conv4 3× 3/1 13× 13 (13 + 2n)× (13 + 2n)
conv5 3× 3/1 13× 13 (13 + 2n)× (13 + 2n)
pool5 3× 3/2 6× 6 (6 + n)× (6 + n)
conv6 6× 6/1 1× 1 (1 + n)× (1 + n)
conv7 1× 1/1 1× 1 (1 + n)× (1 + n)
conv8 1× 1/1 1× 1 (1 + n)× (1 + n)

Table 1. Fully convolutional structure of AlexNet. We turn the
original fully connected layer fc6(4096), fc7(4096) and fc8(2)
into conv6(1×1×4096), conv7(1×1×4096),conv8(1×1×2).

still a proposal of high quality. However, shifting on both
directions leads to 0.68 IoU, such that critical parts are miss-
ing, hindering the stages of feature extraction and classifica-
tion. Except the full body shifting, each body part may also
shift and different parts of the same pedestrian may shift
towards different directions. In our framework, the posi-
tive training samples for each part detector are well aligned
while the testing proposals may shift at all directions. Thus,
handling shifting for both the full body and each part is nec-
essary.

A straight forward way to handle this problem is that we
crop multiple patches around each proposal with jitter, then
feed the cropped patches into the deep model and choose
the highest or averaged score with penalty as the detection
score. However, this method would increase the testing time
by k times, where k is the number of cropped patches for
each proposal.

To reduce the testing computation, we firstly reformu-
late the generic ConvNet models with fully connected layer
as fully convolutional neural networks, which does not re-
quire fixed input size and can process multiple neighboring
patches via only one forward pass. In this case, the input
size of the fully convolutional ConvNet can be changed.
We take the AlexNet as an example, the original input
size of which is 227 × 227. As illustrated in Table 1, af-
ter reformulating fc6, fc7, fc8 as conv6(1 × 1 × 4096),
conv7(1 × 1 × 4096), conv8(1 × 1 × 2), the fully convo-
lutional AlexNet is able to receive an expanded input size
because the convolution and pooling operations are unre-
lated to the input size. Since the step size of receptive field
for the classification layer is 32, the expanded input should
be (227+ 32n)× (227+ 32n) in order to keep the forward
procedure applicable, where n indicates expanded step size
and is a non-negative integer.

Given a proposed part patch (xmin, ymin, w, h) and n,
the expanded cropping patch is (x′min, y

′
min, w

′, h′), where



Figure 5. Best viewed in color. (a) shows how rapidly IoU will decrease with little shifting on horizontal and vertical orientation. (b)
shows how to handle shifting problem in AlexNet. A true positive proposal which shifts 14.1%, namely 32/227, on both horizontal and
vertical side is scored as 3.52 while the corresponding ground truth is scored as 6.81. With the neighboring search and penalization, our
detector adjusts the score value to 5.40.

x′min = xmin −
16n

227
× w, y′min = ymin −

16n

227
× h,

w′ = (1 +
32n

227
)× w, h′ = (1 +

32n

227
)× h.

(3)

Then we resize the patch to (227 + 32n) × (227 + 32n)
and feed it into the fully convolutional AlexNet. As a re-
sult, (1 + n)× (1 + n) neighboring 227× 227 patches are
evaluated simultaneously while the expanded scale keeps
the same as the proposal scale. The final output of conv8
can be viewed as a (1+n)× (1+n) score map S and each
score corresponds to a 227× 227 region. The final score of
the part patch is defined as

s = max
1≤i,j≤n+1

{Si,j − Pi,j} (4)

where Pi,j is a penalty term with respect to relative shifting
distance from the proposed part box and is defined as

Pi,j = a× (|i− n+ 2

2
|+ |j − n+ 2

2
|)× 32

227

+ b× (|i− n+ 2

2
|2 + |j − n+ 2

2
|2)× (

32

227
)2

(5)

where a is the single orientation shifting penalty weight (we
give the same weight on both horizontal and vertical orien-
tations), and b is a geometrical distance penalty weight.

In our implementation, we have n = 2 for all parts and
search the values of a, b for each part by a 6-fold cross val-
idation on training set. Fig.5 (b) shows an example of the
full body part detector with 9 neighboring patches evalu-
ated, where a = 2 and b = 10. Shifting handling is a

kind of context modeling which keeps scale invariant, while
simply cropping larger region with padding and resizing to
227×227 bring a scale gap between the training and testing
stages.

3. Parts Complementarity
For each part, we directly use the output of its Con-

vNet detector as the visible score instead of stacking a lin-
ear SVM on the top as the R-CNN framework [12]. We
find that appending a SVM detector for mining hard nega-
tives does not show significant improvement over directly
using the ConvNet output, especially for GoogLeNet. This
may due to the fact that the training proposals generated by
LDCF[21] are already hard negatives. Thus, we safely re-
move the SVM training stage to save computation time.

Then we employ a linear SVM to learn complementar-
ity over the 45 part detector scores. To alleviate the test-
ing computation cost, we simply select 6 parts with high-
est value of the SVM weight, yielding approximate perfor-
mance. Experiments show that the performance improve-
ment mainly benefits from the part complementarity.

4. Experiments
DeepParts is evaluated on the Caltech dataset [8], using

subsets set00-set05 for training and set06-set10 for testing.
We strictly follow the evaluation protocol of [8], measur-
ing the log average miss rate over nine points ranging from
10−2 to 100 False-Positive-Per-Image. Three subsets are
considered for testing evaluation (Reasonable, Partial oc-
clusion and Heavy occlusion).



Figure 6. Part prototypes of upper, left and full body.

Fine-tuning data upper left full

Every 30th image 41.19 46.96 33.01

Every 10th image 38.25 46.36 30.45

Every 5th image 36.63 41.59 23.83

Every 3rd image 34.60 39.69 23.18

Every image 34.11 37.83 21.19

Table 2. Log-average miss rate (%) on Caltech-Test of upper, left
and full body parts with respect to data volume. All results are
obtained by fine-tuning from AlexNet which adopted image-level
pre-training strategy (i.e. strat.2).

• Reasonable subset. Pedestrians are larger than 49 pix-
els in height and have at least 65 percent visible body parts.
Reasonable subset is considered as a more representative
evaluation than overall performance on all pedestrians and
is the most frequent evaluation setting. Without special il-
lustration, we use Reasonable as our default setting to com-
pare performance.
• Partial and heavy occlusion subsets where pedestrians

are larger than 49 pixels in height and have 1− 35 and 36−
80 percent occluded body parts, respectively.

Because of page limit, we choose three representative
parts for illustration. The selected parts are upper, left, and
full body respectively, and are shown in Fig.6. For each
part, we directly use the part detector output (without SVM
training) as the whole patch score to evaluate the perfor-
mance of single part detector. The complete results are in-
cluded in the supplementary material.

4.1. Evaluation of data volume

To investigate how data volume influences the fine-
tuning performance of part detectors, we compare the per-
formance obtained by fine-tuning AlexNet with five differ-
ent sets of data. Here, AlexNet is pre-trained on ImageNet
image-level data (i.e. strat.2). We present results in Table 2.
The average miss rate of each part detector shows a decreas-
ing pattern when incorporating more image frames. For ex-
ample, the upper, left, and full body detector achieve 7.08%,
9.13% and 11.82% improvements, respectively, when the
data volume is increased by 30×. The three models are still
unsaturated though all training frames have been utilized.

Body Part no SH SH SVM

Upper 26.02 23.93 25.11

Left 29.21 27.43 27.74

Full 16.43 15.41 16.17

Table 3. Effectiveness of shifting handling via a comparison with
no shifting handling and appending SVM on the top. We achieve
the best value for SVM by greedily search the value of C and
overlap thresholds for positive and negative samples.

4.2. Evaluation of models and pre-training

We evaluate the single detector performance of upper,
left, and full body parts with different contemporary deep
architectures. All the deep models are pre-trained with three
strategies, including (1) random initialization (strat.1), (2)
image-level pre-training (strat.2), and (3) object-level pre-
training (strat.3). As shown in Fig.7, GoogLeNet outper-
forms AlexNet and Clarifai over all the three body parts
with ImageNet pre-training. Fine-tuning an object-level
pre-trained GoogLeNet solely on the upper body part can
yields 26.02% miss rate, which is already close to the strong
LDCF proposals. When the full body is utilized, the miss
rate surprisingly reduces to 16.43%, which is the best result
that ever reported on Caltech reasonable subset. Besides,
it is noticeable that GoogLeNet is inferior to AlexNet and
Clarifai with random initialization. We believe it is because
of the model structure, where GoogLeNet are much deeper
and needs more iterations to converge when training from
scratch.

For all three models, random initialization (strat.1)
of network parameters leads to the worst performance.
For full body part, object-level pre-training (strat.3) strat-
egy shows around 1.2% superiority over image-level pre-
training (strat.2) strategy. However, as for upper part and
left part, this gap increases to around 4% for AlexNet and
Clarifai, and 2.5% for GoogLeNet. This may reveal the fact
that pre-training on object-level data are more capable to
model mid-level part variations than on image-level data.

4.3. Evaluation of handling shifting

To understand the effectiveness of shifting handling
(SH), we compare the results of shifting handling with that
of directly utilizing the single patch score given by the last
classification layer (no SH) and that of appending a SVM
on top to mine hard negatives (SVM). The results are col-
lected in Table 3, which shows that Shifting Handling con-
sistently achieves the lowest miss rate over upper, left, and
full body parts. Besides, SVM improves 1.47% over net-
work output for the left part but only improves 0.26% for
full body part, while the improvement of shifting handling
shows a much slower fading pattern as with lower miss
rate. Experiments also reveals that handling shifting pro-



Figure 7. Log-average miss rate (%) on Caltech-Test reasonable subset. The AlexNet, Clarifai and GoogLeNet are represented by blue,
red and green, respectively. Strategy 1, 2, 3 indicate random initialization, image-level pre-training and object-level pre-training, respec-
tively.(a) upper body part. (b) left body part. (c) full body part.

vides more benefits for smaller parts, i.e. the average im-
provement for 2 × 2 parts is 4.3% but it drops to 2.1% for
3×3 parts. This is consistent with the fact that smaller parts
are more flexible to shift.

4.4. Overall evaluation

We report the final results on Caltech-Test in two aspects.
In the first aspect, we investigate the overall pipeline

by adding each component step-by-step, which is summa-
rized in Table 4. The strong LDCF [21] has 24.80% miss
rate. Single full body part detector improves 3.61% by
fine-tuning AlexNet, which is pre-trained on image-level
data. Pre-training GoogLeNet rather than Alex-Net im-
proves miss rate by 3.67%. Changing the pre-training strat-
egy from image-level annotation to bounding box level an-
notation also improves 1.09%. Combining all parts detector
(i.e. 45 in our implementation. All of them are fine-tuned
on GoogLeNet which employed bounding box data for pre-
training.) further reduces the miss rate by 3.31%. By adding
shifting handling for each part detector, the final average
miss rate on the reasonable subset is 11.89%.

In order to reduce testing time, we picked 6 part detec-
tors from the entire part pool, decided by the top 6 weights
of the ensemble SVM. As illustrated in Table 4, the ensem-
ble of the 6 part detectors reaches 12.31%, which shows
that the selected models offer the major improvement of
the whole part pool. To understand whether the improve-
ment comes from model ensemble itself or learning part
complementarity, we construct another two experiments, 1)
by combining 6 best independent parts and 2) by combin-
ing 6 full body detectors which are fine-tuned on AlexNet,
Clarifai, and GoogLeNet with image and bounding box pre-
training strategies, respectively. The weights for combina-
tion are learned by SVM. As shown in Table 4, simply com-
bining the 6 best-performing part detectors reduces the per-
formance, i.e. the miss rate increases 2.97%. Besides, en-

Figure 8. Average miss rate on reasonable subset.

semble of AlexNet, Clarifai, and GoogLeNet only achieves
15.5% miss rate. This reveals that the part complementar-
ity is the major reason for ensemble improvement. The 6
selected parts are given in Fig.2.

In the second aspect, we compare the overall result of
DeepParts with existing best-performing methods , includ-
ing VJ [33], HOG [4], MT-DPM [38], MT-DPM+Context
[38], JointDeep [23], SDN [17], ACF+SDT [28], Informed-
Haar [42], ACF-Caltech+ [21], SpatialPooling [27], LDCF
[21], AlexNet+ImageNet [14], Katamari [3], SpatialPool-
ing+ [27]. Besides, we also compare the DeepParts with all
existing deep models on reasonable subset, including Con-
vNet [29], DBN-Isol [22], DBN-Mut [26] and MultiSDP
[40].

Fig.8, Fig.9, and Fig.10 report the results on reason-
able, partial occlusion, and heavy occlusion subsets, re-
spectively. DeepParts outperforms the second best method
(SpatialPooling+ [27]) by 10 percent on the reasonable sub-
set, which is a large margin. Besides, DeepParts improves
the average miss rate on partial and heavy occlusion sub-
sets by 19.32% and 14.23%, showing its potential to handle
occlusion at different levels.

Deep Models Fig.11 shows that DeepParts achieves the



detection pipeline LDCF AlexNet AlexNet image parts shifting 6 parts top 6 A,C,G

to GoogLeNet to box ensemble handling parts ensemble

miss rate (%) 24.80 21.19 17.52 16.43 13.12 11.89 12.31 15.28 15.50

improvement (%) +3.61 +3.67 +1.09 +3.31 +1.23

Table 4. Ablation study of our pipeline.

Figure 9. Average miss rate on Partial Occlusion subset.

Figure 10. Average miss rate on Heavy Occlusion subset.

Figure 11. Comparison between deep models.

lowest miss rate among all deep models. For example, it
outperforms DBN-Isol, DBN-Mut and JointDeep, which
are also based on part modeling, by 41, 36 and 26 percent.
In addition, DeepParts reduces the miss rate by 11 percent
over AlexNet-ImageNet, which is also fine-tuned on the
ImageNet pre-trained model. However, AlexNet-ImageNet
fails to model the part visibility and thus is hard to handle
occlusion.
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Figure 12. Results on KITTI with moderate subset.

4.5. KITTI

To test the generalization ability and verify whether the
6 complementary parts can be transferred to other street
pedestrian detection dataset, we test our DeepParts on
KITTI [11]. We do not use the training data of KITTI and
all components are trained on Caltech. DeepParts achieves
promising results, i.e., 70.49%, 58.67% and 52.78% AP on
easy, moderate, and hard subsets respectively. Fig.[11] rep-
resents the results on moderate subset (pedestrians are no
less than 25 pixels in height). The best detector Regionlets
[35] classified both the cyclists and pedestrians. The addi-
tional supervision improved its performance of pedestrian
detection. It outperforms DeepParts by 2.48%. Without cy-
clists as supervision, DeepParts is the best-performing de-
tector based on ConvNet, and surpasses R-CNN by 8.54%.

5. Conclusion

In this paper, we proposed DeepParts to improve the
performance of pedestrian detection by handling occlusion
with an extensive part pool, showing significant superior-
ity over previous best-performing models. The DeepParts
can also be treated as a cascade stack over other pedestrian
detectors to further improve performance. Future work lies
towards model compression, such as incorporating all part
detectors into one ConvNet.
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