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Abstract. The accurate diagnosis of Alzheimer’s Disease (AD) and Mild Cog-
nitive Impairment (MCI) is important in early dementia detection and treatment 
planning. Most of current studies formulate the AD diagnosis scenario as a clas-
sification problem and solve such problems using various machine learners 
trained with multi-modal biomarkers. However, the diagnosis accuracy is usual-
ly constrained by the performance of the machine learners as well as the method 
of integrating the multi-modal data. In this study, we propose a novel diagnosis 
algorithm, the Multifold Bayesian Kernelization (MBK), which models the di-
agnosis process as a synthesis analysis of multi-modal biomarkers. MBK con-
structs a kernel for each biomarker that maximizes the local neighborhood af-
finity, and further evaluate the contribution of each biomarker based on a 
Bayesian framework. MBK adopts a novel diagnosis scheme that could infer 
the subject’s diagnosis by synthesizing the output diagnosis probabilities of in-
dividual biomarkers. The proposed algorithm, validated using multi-modal neu-
roimaging data from the ADNI baseline cohort with 85 AD, 169 MCI and 77 
cognitive normal subjects, achieves significant improvements on all diagnosis 
groups compared to the state-of-the-art AD classification methods.  

1 Introduction 

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder among 
aging people and its dementia symptoms gradually deteriorate over years. Mild Cog-
nitive Impairment (MCI) represents the transitional state between AD and cognitive 
normal (CN) with a high conversion rate to AD [1]. The accurate diagnosis of AD, 
especially the early diagnosis of MCI converters who develop into AD in a short term 
(usually 0.5 to 3 years), is important in identifying subjects at a high risk of dementia, 
and thereby planning appropriate treatments accordingly. 

Neuroimaging, such as Magnetic Resonance Imaging (MRI) and Positron Emission 
Tomography (PET), is a fundamental component in the diagnosis of AD and MCI, 
and also an important indicator in disease monitoring and therapy assessments. More 
recently, the large neuroimaging data repositories as an effort of the global coopera-
tion, e.g., the Alzheimer’s Disease Neuroimaging Initiatives (ADNI) [2], boost the 
research in AD and MCI. Many non-imaging biomarkers, such as cerebrospinal fluid 
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(CSF) measures, genetic biomarkers and clinical assessments, are also provided to aid 
the researchers to design algorithms to achieve more accurate AD and MCI diagnosis.  

Most of the current studies formulate the diagnosis scenario as a classification 
problem and solve it using various machine learners. These studies are conducted in a 
similar fashion. The primary features are usually extracted from the MRI data [3-11] 
and/or PET data [5-10], and sometimes combined with others biomarkers, e.g., CSF 
measures [5, 8], genetic biomarkers [6, 8] and clinical assessments [8]. The features 
are then fed into the classifiers, e.g., support vector machines (SVM), which are used 
to solve the classification problem. A challenge of this workflow is how to combine 
multi-modal features. Many studies select a subset of features [7, 9, 11], based on the 
assumption that certain features do not contribute to classification and therefore could 
be discarded. However, it is difficult to compare the multi-modal features on the same 
basis, and the grouping effects of features are usually ignored in feature selection. 
There are also several studies that embed the multi-modal features into a unified fea-
ture space by linear analysis, e.g., Partial Least Squares (PLS) [5], or non-linear spec-
tral embedding, e.g., ISOMAP [3], yet the existing embedding algorithms could not 
sufficiently smooth the embeddings of multi-modal features. Another limitation is that 
the classification accuracy is always constrained by the performance of the classifiers, 
e.g., SVMs enforce the global consistency and continuity of the boundaries and ignore 
the local information. Several studies attempt to use the domain knowledge to manip-
ulate the classifiers to suit their applications [6, 7]. However, the performance gain of 
such classifier-oriented manipulation might not be transferable when combined with 
other classifiers. In addition, the domain knowledge could benefit the classification of 
certain subjects, but might bias the classification of others. 

In this study, we propose a novel diagnosis algorithm, the Multifold Bayesian Ker-
nelization (MBK), to model the diagnosis process as a synthesis analysis of multi-
modal biomarkers. MBK constructs non-linear kernels to obtain the diagnosis proba-
bilities based on individual biomarkers. It derives the weights of the biomarker-
specific kernels with the minimum cost of diagnostic errors and kernelization encod-
ing errors using a Bayesian framework, and infers the subject’s diagnosis probabilities 
by synthesizing the output diagnosis probabilities of individual biomarkers. One 
prominent advantage of MBK is its multi-class nature, unlike other multi-modal 
methods based on two-class classifications [8-10]. We evaluate the MBK algorithm 
with 4 diagnosis groups from the ADNI baseline cohort, and the preliminary results 
show that the MBK algorithm outperforms the state-of-the-art classification-based 
methods and has a great potential in computer aided diagnosis of AD and MCI.  

2 Multifold Bayesian Kernelization  

2.1 Algorithm Overview 

The goal of the Multifold Bayesian Kernelization (MBK) algorithm is to construct 
a set of kernels for multi-modal biomarkers and find an optimal way to integrate the 
diagnosis probabilities of individual biomarkers to enhance the AD and MCI diagno-
sis. It takes three steps to achieve this goal.  



Assume we have a feature set ! for ! subjects with a collection of ! biomarkers, 
!, and the labels of the ! subjects are represented as ! ! !!!! ! !! . The feature for 
the ith biomarker, !!!!, could be represented as !!!! ! !!

! !! ! !!
! ! !!!!!!!, where 

!!!! is the dimension of the features. In the K-step, we aim to learn a kernel, !!!!! for 
each biomarker to encode !!!! in such a way to maximize the local neighborhood 
affinity. Then in the B-step, the contribution of each kernel is evaluated based on the 
Bayesian framework by iteratively minimizing two types of errors: the overall diag-
nostic errors and the sum of individual kernelization encoding errors. Finally, in the 
M-step, MBK infers the diagnosis probabilities of an unknown subject, !, by synthe-
sizing the diagnosis probabilities of individual biomarkers available to !. The pro-
posed diagnosis scheme could take arbitrary biomarkers for analysis. Figure 1 illus-
trates the workflow of this algorithm.  

 
Fig. 1. The workflow of MBK algorithm. The bold-faced letters indicate the three steps of the algorithm.  

2.2 K-step: Single-fold Kernelization 

Single-fold kernelization aims to preserve the local information and provides a way 
to infer the subject’s label from its affinity to its labeled neighbors. Such local infor-
mation is essential in AD diagnosis because the features usually have high noise to 
signal ratio and the data points may not be linearly separable in the feature space.  

We perform the following steps to construct the kernel book for the biomarkers in-
dividually by codebook quantization [12]. To begin with, we employ affinity propaga-
tion algorithm [13] to select a set of exemplars with least square errors to represent 
the dataset. The kernel, !!!!, is defined as the kernelization codebook of the derived ! 
exemplars, i.e., !!!! ! !!!!!!!! . Each exemplar, !!, represents a cluster, !!, in the fea-
ture space, and the marginal distribution of labels given !! is defined as: 

! ! !! !
!
!!

! ! !

! ! !!!

 (1) 

where !! is the number of members in !!, and ! !!!!  is the label distribution for ! !  
estimated from itself and its k nearest neighbors. !!!! is used to encode the original 
features of an unknown subject, !!!!, into a new codeword as: 



sig(𝑥(!)) = arg  min
!!
( 𝜀! − 𝑥(!)

!
) (2) 

The diagnosis probability of 𝑥(!) is derived as the label distribution of its nearest ex-
emplar, i.e., 𝑃 𝑥(!) = 𝑃 𝑦|sig(𝑥(!)) , and the predicted label of 𝑥(!) is defined as: 

𝑦(!) = arg  max
!
  𝑃(𝑦|sig 𝑥(!) ) (3) 

2.3 B-step: Bayesian Inference 

In the B_step, we seek to optimally integrate the kernels, K, that could not only 
achieve more accurate diagnosis, but also preserve the local information of the origi-
nal features [12], i.e., 𝐾 = arg  max

!
(I 𝐾,𝑌 + I 𝑋,𝐾 ), where I ∗,∗  is the mutual infor-

mation between two items. This optimization problem is equivalent to deriving the 
weights of each kernel/biomarker, W, with the minimum cost of the two types of er-
rors, i.e., the overall cost of diagnostic errors and the sum of cost of individual kernel-
ization encoding errors, as: 

arg  min
!

1
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(4) 

s.t., 𝑊!
!!! 𝑖 = 1  

where 𝑦!,!,! is the synthesized diagnosis using all the biomarkers as defined in Eq. 
(6), D ∗ ∗  is the Kullback-Leibler divergence, and 𝛽 is the trade-off parameter be-
tween these two types of errors. We initialize 𝑊 equally, assuming the contributions 
of all the biomarkers are the same and then iteratively update 𝑊 as follows: we recal-
culate the cost derived by each kernel after each iteration as well as the ratio of cost of 
each kernel to the total cost as the inferred posterior weights, 𝑊’; we subtract the av-
erage ratio of all kernels from 𝑊’ to derive the change rates of the kernels, 𝑔𝑊, then 
use (𝑊 − 𝑔𝑊) as the new input to the Bayesian framework; we repeat this process 
until the cost is minimized and no further improvement can be made.  

2.4 M-step: Multifold Synthesis 

The M-step is used to infer the diagnosis probabilities of a given testing subject 
with a set of biomarkers, 𝑀. The subjects are first encoded into the codewords with 
the single-fold kernels of 𝑀, and derive the diagnosis probabilities based on each 
biomarker. The diagnosis probabilities using individual kernels are further combined 
using 𝑊 to compute the integrated diagnosis probabilities as: 

𝑃 𝑦|𝑥,𝑀,𝑊 = 𝑊(𝑖)𝑃 𝑦|sig(𝑥(!))  
  !:{!(!)∈!}

 (5) 

where sig(𝑥(!)) is the codeword of 𝑥 derived from the ith single-fold kernelization. 
Thus the synthesized diagnosis of 𝑥 is defined as: 

𝑦!,!,! = arg  max
!
  𝑃 𝑦|𝑥,𝑀,𝑊  (6) 



Note that 𝑀 is not required to be equal to 𝑀. This is because the outputs of the M-
step are the diagnostic probabilities and the diagnosis can be made based on arbitrary 
number of biomarkers without a need to re-train the model, although more biomarkers 
may lead to more deterministic diagnoses. This flexibility enables the MBK algorithm 
to be more practical than the metric-based classifiers.  

3 Experiments  

3.1 Data Acquisition and Feature Extraction 

The experiment data used in this work was obtained from the ADNI database [2]. 
Totally 331 subjects were selected from the ADNI baseline cohort, including 85 AD-, 
169 MCI-and 77 CN- subjects. The MCI group was further divided into two sub-
groups. There were 67 MCI subjects converted to AD in half to 3 years from the first 
scan, and they were considered as the MCI converters (cMCI). The other 102 MCI 
subjects were then considered as the non-converters (ncMCI). For each subject, an 
FDG-PET image and a T1-weighted volume acquired on a 1.5 Tesla MR scanner 
were retrieved. All the 3D MRI and PET data was converted to the ADNI format 
following the ADNI image correction protocol [2, 14]. The PET images were further 
aligned to the corresponding MRI image using FSL FLIRT [15]. We then nonlinearly 
registered the MRI images to the ICBM_152 template [16] with 83 brain functional 
regions using the Image Registration Toolkit (IRTK) [18]. The outputted registration 
coefficients by IRTK were applied to warp the aligned PET images into the template 
space. We finally mapped all brain functional regions in the template space using the 
multi-atlas propagation with enhanced registration (MAPER) approach [19] on each 
registered MRI and PET image for the region-wise feature extraction.  

Four types of features were extracted from each of the 83 brain regions, including 
the average cerebral metabolic rate of glucose consumption (CMRGlc) parameters 
[20] from the PET data, and the grey matter volume, solidity, and convexity features 
from the MRI data. Totally 332 sets of features were extracted for each subject. In this 
study, we used each set of features to represent a biomarker, therefore, the feature 
dimension was 1 for all biomarkers, i.e., {𝑉 ! = 1}!!!! . Figure 2 shows the process of 
the data pre-processing and feature extraction.  

 
Fig. 2. The procedure for data pre-processing and feature extraction 



3.2 Performance Evaluation 

We compared the diagnosis performance of the proposed MBK algorithm to three 
state-of-the-art neuroimaging classification algorithms. We used ISOMAP, same as in 
[3], as the benchmark of the feature embedding algorithms. Elastic Net was used as 
the benchmark of the feature selection algorithms, same as in [9].  We further imple-
mented a domain-knowledge-learning graph cuts (DKL-GC) algorithm, a variant of 
[7], as the benchmark of supervised learning algorithms. More specifically, we de-
signed a cost function to encode the different AD conversion rates and minimize the 
type II error for cMCI, The features processed by EN and ISOMAP were fed into the 
SVM with Gaussian kernels. The optimal trade-off parameter (C) and the kernel pa-
rameter (γ) for Gaussians in SVM, and the cost function weight parameters in DKL-
GC were estimated via grid-search. The parameter settings of MBK, 𝑘,𝛽 , were set 
by pilot experiments ( 𝑘,𝛽 = 5, 0.5   in this study). All SVM based cross-validations 
and performance evaluations were conducted using LIBSVM library [21]. The DKL-
GC optimization was solved by the GCO_V3.0 library [22].  The average classifica-
tion accuracy of 331 subjects among 4 diagnosis groups was used to evaluate the 
performance of different algorithms. A 5-fold cross-validation paradigm was adopted 
throughout all the algorithms for performance evaluation with a separate subset of the 
dataset as the testing set and the rest subset as training set each time. Note that for the 
MBK method, the same training set was used to construct the single-fold kernels in K 
step as well as to derive the kernel parameters in B step for each fold.  

3.3 Results  

  
Fig. 3. The outputs of B-step in MBK with 50 iterations 

We divided the biomarkers into two groups according to their modalities, including 
83 biomarkers from PET data, and 249 biomarkers from MRI data. We then conduct-
ed the Bayesian inference in the B-step in MBK using the PET group, MRI group and 
the merged group (PET + MRI). Fig. 3 demonstrates the average diagnosis accuracy 
and the cost of errors based on the updated weights derived during iteration. The error 
bars indicate the mean values and standard deviations of the 5 measures by cross-
validation. We found that the merged group achieved the highest accuracy with the 
lowest error cost after 11 iterations and its performance stays stable after 15 iterations.  



Table 1. The diagnosis performance (%) of the proposed MBK algorithm compared to the state-of-the-art 
classification-based methods, evaluated with PET+MRI biomarkers  

Algorithm Prediction 
Ground  Truth CN ncMCI cMCI AD 

Feature Embedding: 
ISOMAP -SVM 

CN 34.33 38.80 15.60 11.27 
ncMCI 26.64 38.86 15.12 19.38 
cMCI 20.30 34.46 21.08 24.16 
AD 16.81 25.66 18.56 38.96 

Feature Selection:  
EN - SVM 

CN 60.57 29.13 4.13 6.17 
ncMCI 27.43 43.56 1169 17.32 
cMCI 17.96 33.64 25.06 23.33 
AD 5.71 19.05 11.43 63.81 

Supervisory Learn-
ing:  

DKL - GC 

CN 64.29 0.00 0.65 35.06 
ncMCI 26.96 38.24 2.94 31.86 
cMCI 21.64 6.72 51.49 20.15 
AD 8.24 7.06 2.94 81.76 

The proposed: 
MBK 

CN 86.00 6.50 1.00 6.50 
ncMCI 10.00 66.96 0.43 22.61 
cMCI 8.48 8.48 60.61 22.42 
AD 5.65 8.70 2.17 83.48 

MBK  
< PET Biomarkers > 

CN 59.74 15.58 9.09 15.58 
ncMCI 24.51 43.14 3.92 28.43 
cMCI 16.42 8.96 46.27 28.36 
AD 3.53 16.47 8.24 71.76 

Table 1 shows the results of the proposed MBK algorithm compared to ISOMAP 
and EN processed features with optimized SVMs, and the DKL-GC algorithm. The 
MBK algorithm outperformed the other classification-based algorithms in all diagnos-
tic groups, achieving an average accuracy of 74.2% compared to 38.4% of the 
ISOMAP, 54.3% of EN, and 63.29% of DKL-GC. The ISOMAP method had the 
lowest performance and the results indicated that it was not suitable for multi-modal 
feature integration. EN introduced 𝑙! and 𝑙! penalties on the feature variables to en-
courage the grouping effect, therefore the correlation between features were better 
preserved and it achieved better results than ISOMAP. DKL-GC algorithm was spe-
cifically designed for prediction of cMCI, as a result the cMCI classification rate of 
DKL-GC was markedly higher than ISOMAP and EN. However, it required the prior 
knowledge to assign higher penalty for a cMCI type II error to achieve better cMCI 
detection; and the performance of ncMCI classification was compromised due to such 
penalty function design. The MBK algorithm requires no domain knowledge and it 
will not bias the performance of certain diagnosis groups.  

Table 1 also shows the performance of MBK on 83 PET biomarkers alone using 
the average weights derived using 5-fold cross-validation for 332 PET+MRI bi-
omarkers. The performance of using PET biomarkers alone is not as high as the 
merged PET+MRI biomarkers, but is comparable with other algorithms. This demon-
strates that the MBK works well with varying biomarker set. The MBK algorithm 
could diagnose AD and CN at a high accuracy, yet the diagnosis of cMCI and ncMCI 
is still very challenging.  



4 Conclusions 

In this study, we presented a novel diagnosis algorithm, the Multifold Bayesian 
Kernelization, for the diagnosis of AD and MCI. It differs from the classification-
based methods in that: 1) it models the diagnosis process as a synthesis analysis of 
multi-modal biomarkers to avoid the pitfall of classifiers; 2) it adopts a novel diagno-
sis scheme synthesizing the outputted diagnosis probabilities of individual biomarkers 
instead of combining the inputted features of the biomarkers. The preliminary results 
showed that the MBK algorithm outperformed the state-of-the-art classification-based 
methods and had a great potential in the application of computer aided AD diagnosis.  
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