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Abstract 

We propose a face difference model that decomposes 

face difference into three components, intrinsic 

difference, transformation difference, and noise. Using 

the face difference model and a detailed subspace analysis 

on the three components we develop a unified framework 

for subspace analysis. Using this framework we discover 

the inherent relationship among different subspace 

methods and their unique contributions to the extraction 

of discriminating information from the face difference. 

This eventually leads to the construction of a 3D 

parameter space that uses three subspace dimensions as 

axis. Within this parameter space, we develop a unified 

subspace analysis method that achieves better recognition 

performance than the standard subspace methods on over 

2000 face images from the FERET database. 

1. Introduction 

Many face recognition techniques have been 

developed over the past few decades [6]. Among the 

existing face recognition techniques, subspace methods 

are widely used to reduce the high dimensionality of the 

raw face image. Eigenface method (PCA) [5] is a first 

breakthrough for the subspace techniques. It uses the 

Karhunen-Loeve Transform (KLT) to produce a most 

expressive subspace for face representation and 

recognition. LDA or Fisher Face [1], is an example of the 

most discriminating subspace methods. Linear 

discriminant analysis is adopted to seek a set of features 

best separating face classes. The Bayesian algorithm 

using probabilistic subspace is proposed in [3]. It casts 

the face recognition problem as classifying intrapersonal 

and extrapersonal variations. 

In this work, we develop a unified subspace analysis 

method based on a new framework for the three subspace 

face recognition methods: PCA, LDA and Bayesian 

algorithms. As discussed earlier, they represent three 

major approaches for subspace based face recognition. 

PCA has become an evaluation benchmark for face 

recognition. Both LDA and Bayesian algorithms achieved 

superior performance in FERET competition [4]. A 

unified framework on the three methods will greatly help 

to understand the family of subspace methods.  

We first propose a face difference model decomposing 

face difference into three components, intrinsic difference 

I
~

, transformation difference T
~

, and noise N
~

. A unified 

framework is then constructed using this face difference 

model and a detailed subspace analysis on the three 

components. Using this framework we discover the 

inherent relationship among different subspace methods 

and their unique contributions to the extraction of 

discriminating information from the face difference. This 

eventually leads to the construction of a 3D parameter 

space that uses the three subspace dimensions as axis. 

Within this parameter space, we develop a unified 

subspace analysis method that achieves better recognition 

performance than the standard subspace methods.  

2. Review of subspace methods 

We formulate the face recognition problem as 

following. A 2D face image is viewed as a vector in the 

image space. A set of sample face images ix  can be 

represented by an N by M matrix MxxX ,1 , where M

is the number of samples and N is the number of pixels in 

the images. Each face image ix  belongs to one of the L

individual classes LXX ,1 , and ix  is the class label 

for ix . When a test image T  is the input, the face 

recognition task is to find its class in the database. Based 

on this formulation, a short review for the PCA, LDA, 

and Bayes approaches is given in this section.  

2.1 PCA 

In the PCA method, a set of eigenfaces are typically 

computed from the eigenvectors of sample covariance 

matrix C ,
M

i

T
ii mxmxC

1

,              (1) 

where       M

i ix
M

m
1

1
.                   (2) 

The eigenspace U  is spanned by K  eigenfaces with the 

largest eigenvalues, KuuU ,1 . In the recognition 

process, the prototype P  for each face class and the 

testing image T  are projected onto the eigenspace to get 

the weight vectors, 

mPUw T
p .            (3) 
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mTUw T
T .                 (4) 

The face class is found to minimize the distance 

|||| pT ww .                                (5) 

2.2 LDA 

LDA finds the subspace best discriminating different 

face classes. It is carried out by maximizing the between-

class scatter matrix bS  and minimizing the within-class 

scatter matrix wS  in the projective subspace. bS  and wS

are defined as 
L

i Xx

T
ikikw

ik

mxmxS

1

,      (6) 

L

i

T
iiib mmmmnS

1

,                   (7) 

where  im is the mean face for the class iX , and in  is the 

number of samples in class iX .

The subspace for LDA is spanned by a set of vectors 

11 ,, LwwW , satisfying 

WSW

WSW
W

w
T

b
T

maxarg ,               (8) 

where W  can therefore be constructed by the 

eigenvectors of bw SS 1 .

Computing the eigenvectors of bw SS 1  is equivalent to 

simultaneous diagonalization of wS and bS  [2]. First wS

is whitened by 

ISw
T 2/12/1                   (9) 

where , are the eigenvector matrix and eigenvalue 

matrix of wS . Second, apply PCA on class centers using 

the transformed data. Projecting the class centers onto 
T2/1 , bS  is transformed to bK  as, 

2/12/1
b

T
b SK .                        (10) 

After computing the eigenvector matrix and 

eigenvalue matrix  of bK , the overall projection 

vectors of LDA can be defined as 
2/1W .   (11) 

As shown in [2], W is the eigenvector matrix of bw SS 1 .

The face class is chosen to minimize the linear 

discriminant function, 

|||||||| PTWTd T .                (12) 

To avoid degeneration of wS , most LDA methods 

usually first reduce the data dimensionality by PCA, then 

apply discriminant analysis in the reduced PCA space. 

2.3 Bayesian algorithm 

      The Bayesian algorithm classifies the face intensity 

difference  as intrapersonal variation ( I ) for the same 

individual and extrapersonal variation ( E ) for different 

individuals [3]. The MAP similarity between two images 

is defined as the intrapersonal a posterior probability 

)|(),( 21 IPIIS
)()|()()|(

)()|(

EEII

II

PPPP

PP
.      (13) 

To estimate )|( IP , PCA on the set I|

decomposes the image difference space into intrapersonal 

principal subspace F  and its orthogonal complementary 

space F . The likehood can be estimated as, 

2/

2

1
2/12/ 2

2/)(exp

2

)(
2

1
exp

)|(ˆ
KNK

i i
K

F

I

d

P
.            (14)

In Eq. (14), )(Fd  is a Mahalanobis distance in F ,

referred as “distance-in-feature-space” (DIFS), 

K

i i
F

i
y

d

1

2

)( ,   (15) 

where iy  is the principal component and i  is the 

eigenvalue. )(2  is defined as “distance-from-feature-

space” (DFFS), equivalent to PCA residual error in F .

is the average eigenvalue in F . )|( EP  can be estimated 

in a similar way. The principal subspace computed from 

the set E|  is called extrapersonal eigenspace.  

An alternative maximum likehood (ML) measure is 

defined as 

)|()(' IPS .   (16) 

It has been shown to be simpler but almost as effective as 

the MAP measure in Eq. (13) [3]. 

3. A unified framework 

In this section, we construct a unified framework 

revealing the intrinsic connections of the three methods. 

Let us first look at the matching criterions and focus on 

the difference PT  between the testing image T

and the prototype P . The matching criterion for PCA in 

Eq. (5) can be rewritten as 

|||||||| TTT
PCA UmPUmTU       (17) 

For LDA, according to Eq. (12), the linear discriminant 

function can also be expressed in terms of ,

|||| T
LDA W .                              (18) 

Finally, for the Bayesian algorithm using ML measure, 

the similarity measure of Eq. (14) can be evaluated as a 

distance measure, 

/2
FBayes d             (19) 

From Eq. (17), (18), and (19), we see that the recognition 

process of the three methods can be shown by a simple 

framework in Fig. 1. When a testing face image T  is 

input, it is first subtracted of each class prototype P . The 

difference  is projected onto an image subspace to 
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extract the feature vector and evaluated to be 

intrapersonal variation or extrapersonal variation. 

The two central components of this framework are the 

image difference  and the subspace onto which  is 

projected. We model the difference  by three 

components: intrinsic difference ( I
~

) that discriminates 

different individuals; transformation difference ( T
~

),

arising from all kinds of transformations, such as 

expressions, illuminations, and view changes; noise ( N
~

),

randomly distributed in the face images.  

The intrapersonal variation I  is composed of T
~

and 

N
~

, since it comes from the same individual. For E , I
~

,

T
~

and N
~

, are coupled together. Therefore, we have, 

NTI
~~

,                                (20) 

NTIE
~~~

.                             (21) 

    T
~

and N
~

 are the two components deteriorating the 

recognition performance. Normally, N
~

 is of small 

energy. The main difficulty for face recognition comes 

from T
~

. Under a large transformation, T
~

 can potentially 

be greater than I
~

. A successful approach should reduce 

the energy of T
~

 and N
~

as much as possible without 

sacrificing much of I
~

. We now analyze the behavior of 

the three subspaces for PCA, LDA and Bayes in order to 

discover how they process the three components.

3.1 Eigenspace for PCA 

Eigenfaces are computed from the ensemble covariance 

matrix C . We can show that C can also be computed 

from the set, ji xx , containing all the differences 

between any pair of face images in the training set. 

Theorem 1. The eigenspace of PCA characterizes the 

difference between any two face images, which may 

belong to the same individual or different individuals.  

Proof. We only need to show that the covariance 

matrix C for ix  can also be computed as 

M

i

M

j

T
jiji xxxx

M
C

1 1
2

1
.

From Eq. (1) we have 
M

i

T
ii mxmxC

1

.

Replace m  with Eq. (2), 

M

i

T
M

i
M

i
M

xx
x

M

xx
xC

1

11                                                      

   
M

i

M

j

M

k

T
kiji xxxx

M 1 1 1
2

1
.      (22) 

Rewrite C  using different subscripts (exchange i and j), 

M

j

M

i

M

k

T
kjij xxxx

M
C

1 1 1
2

1
.

Change the order of summation, 

M

i

M

j

M

k

T
kjij xxxx

M
C

1 1 1
2

1
  (23) 

Average (22) and (23), 

           
M

i

M

j

M

k

T
jiji xxxx

M
C

1 1 1
2

1

2

1

               
M

i

M

j

T
jiji xxxx

M
1 1

2

1
.    (24) 

Removing the scale 1/2M will not affect the eigenvectors 

of C , thus 
M

i

M

j

T
jiji xxxxC

1 1

                         (25) 

Therefore, C is also the covariance matrix for the face 

difference set jxix .

3.2 Intrapersonal and Extrapersonal Subspaces 

In the Bayesian algorithm, the eigenvectors of 

intrapersonal subspace are computed from the image 

difference set jiii xxxx | , for which the 

covariance matrix is 

ji xx

T
jijiI xxxxC .                     (26) 

The eigenvectors of extrapersonal subspace are derived 

from the difference set jiii xxxx | , with 

covariance matrix 

               

ji xx

T
jijiE xxxxC .                    (27) 

Comparing IC  and EC  with C, we derive the following 

theorem, 

   Theorem 2. The intrapersonal and extrapersonal 

subspaces are the two components of the PCA 

eigenspace, and the extrapersonal eigenfaces are similar 

Figure 1. Diagram of the unified framework 

for face recognition. 
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to the PCA eigenfaces. 

Proof. From Eq. (25), (26) and (27) we have 

ECICC .   (28) 

C is composed of IC  and EC . Therefore the 

intrapersonal and extrapersonal subspaces are the two 

components of the PCA eigenspace. Since the sample 

number for EC  is far greater than that of IC , the energy 

of EC  dominates the computation of C . So the extra-

personal eigenfaces are similar to the standard eigenfaces.  

    In E , T
~

 and I
~

 are coupled. Therefore, as discussed 

later the extrapersonal subspace, which is similar to the 

PCA eigenspace, cannot contribute much to separating T
~

and I
~

. This shows that the improvement of the Bayesian 

algorithm over the PCA mostly benefits from the 

intrapersonal subspace. It demonstrates that why the ML 

measure using the intrapersonal subspace alone is almost 

as effective as the MAP measure using two subspaces [3]. 

3.3 Subspace for LDA 

The subspace for LDA is derived from the within-class 

scatter matrix and the between-class scatter matrix. We 

also can study the LDA subspace using image difference. 

     Theorem 3. The within-class scatter matrix is 

identical to IC , the covariance matrix of the intrapersonal 

subspace, which characterizes the face variation for the 

same individuals. Using the mean face image to describe 

each individual class, the between-class scatter matrix 

characterizes the variation between mean face images. 

Proof. For simplicity, we assume that each class has 

the same sample number n. Similar to the proof of 

Theorem 1, we have, 

          
L

i Xx

T
imkximkxwS

ik1

L

i Xxx

T
kxkxkxkx

n
ikk1 ,

2

1

21

2121
                   (29) 

Therefore, ICwS .    

L

i

T
iib mmmmnS

1

L

i

L

j

T
jiji mmmm

L

n

1 1
2

   (30) 

This shows that bS  is the covariance matrix of the face 

difference set jmim .

3.4 Comparison of the three subspaces 

We now investigate how these subspaces separate 

discriminating information I
~

 from the deteriorating 

factors T
~

 and N
~

.

As shown in Fig. 2 (a), in the PCA subspace, both T
~

and I
~

, as structured signals embedded in the original 

face image, concentrate on the small number of principal 

eigenvectors. By selecting the principal components, most 

noise encoded on the large number of trailing 

eigenvectors is removed from T
~

 and I
~

. Because of the 

presence of T
~

, the PCA subspace is not ideal for face 

recognition. 

For the Bayesian algorithm, the intrapersonal subspace 

plays a critical role. Since intrapersonal variation only 

contains T
~

 and N
~

, PCA on intrapersonal variation 

arranges the axes according to the energy distribution of 

T
~

, as shown in Fig. 2 (b). When we project a face 

difference  onto the intrapersonal subspace, most 

energy of the T
~

 component will concentrate on the first 

few largest eigenvectors, while the I
~

and N
~

components 

are randomly distributed over all of the eigenvectors. This 

is because I
~

 and N
~

 are somewhat independent of T
~

,

which forms the principal vectors of the intrapersonal 

subspace. In Eq. (19), the Mahalanobis distance in F

weights the feature vectors by the inverse of eigenvalues. 

It effectively reduces the T
~

 component since the 

principal components with large eigenvalues are 

significantly diminished. )(2  is also a distinctive 

component for recognition, since it throws away most of 

the component T
~

 on the largest eigenvectors, while 

keeps the majority of I
~

.

The Bayesian algorithm successfully separates T
~

 from 

I
~

. However, I
~

 and N
~

 are still coupled on the small 

(b) Intrapersonal subspace

T
~
N
~

Figure 2. Energy distribution of the three components I
~

, T
~

, and N
~

on eigenvectors in the PCA subspace (a), the 

intrapersonal subspace (b) and the LDA subspace(c). 

T
~
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eigenvectors. Even though N
~

 is usually of small energy, 

when it is normalized by the small eigenvalues as shown 

in Eq. (15) and (19), the effect of N
~

 could be 

significantly enlarged in the probabilistic measure. 

Finally, we look at the LDA subspace. The LDA 

procedure can be divided into three steps. First, PCA is 

used to reduce the data dimension. Same as discussed 

earlier, noise N
~

 is significantly reduced in this step. In 

the second step, to whiten the within-class scatter matrix 

we first compute its eigenvector matrix  and eigenvalue 

matrix . From Theorem 3, we know that  spans the 

intrapersonal subspace, therefore  essentially represents 

the energy distribution of T
~

. The whitening process 

projects data onto intrapersonal subspace  and 

normalizes them by 2/1 . Therefore this step reduces T
~

in a manner similar to the Bayes analysis. 

In the third step of LDA, PCA is again applied on the 

whitened class centers. Through averaging to compute the 

class centers, the noise N
~

 is further reduced in this step. 

This is useful since N
~

 may have been enlarged in the 

second step whitening process. Since both T
~

 and N
~

have been reduced up to this point, the main energy in the 

class centers is the intrinsic difference I
~

. However, as 

shown in Fig. 2 (b), I
~

 is obtained by discarding principal 

component T
~

 in the intrapersonal subspace, so I
~

 may 

spread over the entire axis after the whitening. PCA on 

the class centers therefore serves two purposes. First, it 

further reduces the noise as PCA usually does. Second, it 

concentrates the energy of I
~

 on to a small number of 

principal components, as shown in Fig. 2 (c).  

The subspace analysis results of the three methods on 

the face difference model are summarized in Table 1. We 

can clearly see the unique contribution of each subspace 

to the processing of the face difference model.  

4. Unified subspace analysis 

There are two major difficulties for subspace based 

face recognition: small number of samples for each class 

and large number of classes. First, if there are too few 

samples for each class, the training set used to derive the 

intrapersonal subspace may not contain all the 

transformations in the testing set. So T
~

 cannot be 

effectively estimated and reduced. Second, for a large 

class number, it is difficult to effectively extract all the 

intrinsic difference I
~

 to cover the differences between 

every two individuals.  

In order to alleviate these two problems, using the 

above new framework, we propose a unified subspace 

analysis method for face recognition as follows: 

(1) Project face vectors to PCA subspace and adjust the PCA 

dimension (dp) to reduce most noise. 

(2) Apply Bayesian analysis in the reduced PCA subspace 

and adjust the dimension (di) of intrapersonal subspace. Since 

human faces share similar intrapersonal variation, the 

transformation T
~

 for a testing individual can be estimated from 

faces of others. Therefore, our intrapersonal subspace is 

computed from an enlarged intrapersonal difference set that 

contains individuals both inside and outside of the gallery, so 

that the intrapersonal subspace is robust to all the 

transformations in the testing set. 

(3) For the L individuals in the gallery, compute their training 

data class centers. Project all the class centers onto the 

intrapersonal subspace, and then normalize the projections by 

intrapersonal eigenvalues to compute the whitened feature 

vectors. 

(4) Apply PCA on the whitened feature vector centers to 

compute a discriminant feature vector of dimension 1dl .

(5) For a probe face, retrieve the top N individuals from the 

gallery using the 1dl  discriminant features.  

(6) Using only the top N class centers, re-compute 2dl

discriminant features, i.e. repeat step-4 for the N classes. 

(7) Re-rank the top N individuals using the 2dl  new features.

This algorithm has three major improvements over 

traditional subspace methods. First, it provides a new 

parameter space to improve recognition performance. It 

controls I
~

, T
~

 and N
~

 components in the image 

difference by adjusting the dimensionality of the three 

subspaces, the PCA subspace (dp), intrapersonal subspace 

(di), and discriminant subspace (dl). The interaction of 

the three parameters greatly affects the system 

performance. Using each of the three subspace 

dimensions as a parameter axis, the algorithm provides a 

three-dimensional parameter space, as shown in Fig. 4.  

The original PCA, LDA, and Bayes methods only 

occupy some local lines or areas in the 3D parameter 

space. PCA changes parameters in the dp direction on 

line AD. DIFS and DFFS of the Bayesian algorithm 

change on the line DEF in the di direction. Fisher Face 

[1] corresponds to point B (dp=di=M-L, dl=L-1) in the 

graph. All these methods change parameters only in the 

local regions. However, for our new algorithm, optimal 

parameters may be searched in the full 3D space. We can 

clearly see the advantage of this in the experiments. 

Table 1. Behavior of the subspaces on characterizing the face 

difference 

Decompose Face Image 

Difference 
Algorithm Subspace 

Principle 

Space

Complementary 

Space 

PCA Eigenspace TI
~~

N
~

LDA 
Subspace for 

LDA I
~

NT
~~

Intrapersonal 

subspace T
~

NI
~~

Bayes 
Extrapersonal 

subspace TI
~~

N
~
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The second improvement of the algorithm is the 

adoption of different training data at different steps of the 

training process according to the special requirement of 

the step. In traditional method, the same training data is 

used throughout the algorithm. The conflict requirements 

of each step limit the optimization ability of the 

algorithm. For example, in LDA, wS  and bS  come from 

the same training data. If only the individuals in the 

gallery are selected for training, the samples for each 

class may be too few to estimate the transformation 

difference T
~

, since sometimes there is only one sample 

for each individual in the gallery. However, if we add to 

the training set with many more individuals outside the 

gallery, bS  may be too distracted to extract optimal 

features targeting the discrimination of the individuals in 

the gallery.  

In order to accomodate this conflicting requirement, we 

use different training set for different steps. For the 

intrapersonal subspace estimation (step 2) we use an 

enlarged intrapersonal difference set that contains 

individuals both inside and outside of the gallery to 

effectively estimate T
~

. Then for the discriminant analysis 

step (step-3,4), we only use the class centers of the 

individuals in the gallery, so that the features extracted 

are specifically tuned for the individuals in the gallery. 

The third improvement of the algorithm is the design of 

a two-step approach to solve the large class number 

problem. In the first step, we first retrieve the top N

individuals most similar to the probe face. This is a 

significant reduction of class number. In the second step, 

we re-compute the discriminate features using only the 

top N class centers. Unlike the features used in step-1, 

which are computed using the whole gallery, these new 

features are more closely related to the probe face since 

they are computed from faces that are very similar to the 

probe, thus should be more effective in discriminating 

this group of similar faces. In addition, we only need to 

classify N individuals instead of L using the new features. 

It is much easier to seek for the intrinsic difference for N

classes than L classes. Re-computing the discriminant 

features only needs to solve an N by N matrix. The cost is 

minimal since N is very small (N << L).

5. Experiment 

    In this section, we conduct experiments on face images 

of 1195 people selected from the FERET face database 

with two images for each person. Images of 495 people 

are used for training and the remaining 700 people are 

used for testing. So there are 990 face images in the 

training set, 700 face image in the gallery, and 700 face 

images for probe. All the images are normalized by the 

eye locations. A mask template is used to remove the 

background and the hair. Histogram equalization is 

applied to the face images for photometric normalization.  

5.1 PCA Experiment 

The recognition accuracy of the PCA method using 

different eigenspace dimension (dp) is shown in Fig. 5. 

The accuracy of direct correlation is 84.1%. We use the 

direct correlation as a benchmark since it is essentially a 

direct use of image difference without subspace analysis. 

When dp is small, the PCA result is worse than direct 

correlation. As dp increases, it steadily approaches the 

benchmark. The results show that PCA is no better than 

direct correlation in terms of accuracy. Even though PCA 

can effectively reduce subspace dimension through 

removing noise N
~

, it cannot decouple I
~

 and T
~

 to 

improve recognition accuracy. 

5.2 Bayesian Experiment 

Experimental results for the Bayesian algorithm are 

reported in Fig. 6. It has achieved around 10% 

improvement over direct correlation, and is stable even 

for a small feature number. When only 20 features are 

selected, the accuracy of PCA is less than 70%, while the 

ML measure achieves 93% accuracy. When only a small 

number of eigenvectors are selected, the principal 

subspace does not have enough information on I
~

, so the 

accuracy of DIFS is low (below 60% for 20 

eigenvectors). However, the lost information can be 

compensated from DFFS in the complementary subspace. 
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Figure 5. Recognition accuracy of the PCA 

method on the FERET database. 
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Figure 6. Recognition accuracy of  the 

Bayesian algorithm on the FERET database. Figure 4. 3D parameter space. 
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So the accuracy of ML is high by combining the two 

components together.  

5.3 Bayesian analysis in reduced PCA space 

After comparing the PCA and Bayesian methods 

individually, we now use a set of experiments to 

investigate how the two subspace dimensions in our 3D 

parameter space may interact with each other. We first 

apply PCA on the raw face vector to reduce the 

dimensionality and remove the noise. Then the Bayesian 

analysis is implemented in the reduced PCA space. This 

corresponds to the dp-di plane in the 3D space in Fig. 4. 

Results are reported in Table 2. The vertical direction 

is the dimensionality of PCA space (dp) and the 

horizontal direction is the dimensionality of intrapersonal 

space (di). The dp-di accuracy surface is also plotted in 

Fig. 7. There are two benchmark curves in the 3D space 

of Fig. 7. One is traditional PCA accuracy curve as 

reported in the second column in Table 2. This can be 

used to evaluate the improvement of Bayesian analysis. 

The second curve is the DIFS curve of the standard 

Bayesian algorithm based on raw face vectors. It is 

reported in the bottom row of Table 2. We will compare it 

with DIFS curves in different PCA spaces.  The 

maximum for di is 495,min pd .

The shape of dp-di accuracy surface clearly reflects 

the effect of noise. When dp is small, there is little noise 

in the PCA subspace. So the recognition accuracy 

monotonically increases with di as more discriminating 

information I
~

 is added, and finally reaches the highest 

point at the full dimensionality of the intrapersonal 

subspace. However, as dp increases, noise begins to 

appear in the PCA subspace. The curve starts to decrease 

after reaching a peak point before di reaches the full 

dimensionality. The decrease in accuracy at the end of the 

curve is because noise on the small eigenvectors is 

magnified by the inverse of the small eigenvalues.   

This effect of noise is especially severe when both dp

and di are around 495, i.e. the largest possible di. In this 

region, the accuracy becomes as low as 67%. Because of 

the large dp, noise has become a fairly significant 

problem. When di becomes the same size as dp, all the 

energy in the PCA subspace, including noise, are selected 

for the Bayesian analysis. Noise concentrated on the last 

few very small eigenvectors will be drastically magnified 

because of the very small eigenvalues. 

We plot the highest accuracy of each accuracy curve 

of different dp in Fig. 8. The maximum point with 96% 

accuracy could be found at (dp=150, di=150).  

5.4 Extract discriminant features from intrapersonal 

subspace 

We now investigate the effect of the third dimension dl

in the 3D parameter space. For ease of comparison, we 

choose three representative points on the dp-di surface, 

and report the accuracy along the dimension of dl as 

shown in Fig. 9. The curves first increase to a maximum 

point and then drop with further increase of dl. For 

traditional LDA, the dl dimension is usually chosen 

as 1L , which corresponds to the last point of the curve 

with di = 494. The result is clearly much lower than the 

highest accuracy in the Fig. 9. As discussed in Section 3, 

this dimension mainly serves to compact I
~

 and remove 

more noise N
~

, so the dimensionality should be 

reasonably small instead of being fixed by L. The best 

results on the curses are indeed better than using the first 

two dimensions only. 

As shown by these experiments, although we have not 

explored the entire 3D parameter space, better results are 

already found comparing to the standard subspace 

methods. A careful investigation of the whole parameter 

space should lead to further improvement. 

5.6 Unified subspace analysis 

We now test the unified subspace analysis algorithm 

using the 495 individuals to compute intrapersonal 

subspace, and the 700 individuals in the gallery to 

compute the between class scatter matrix. With 

dp=di=150, 21 dldl =TopN-1, the recognition accuracies 

using different number of discriminant features are even 

better. We also notice that it can achieve a relatively high 

accuracy using a very small number of discriminate 

Table 2. Recognition accuracy of Bayesian analysis in the reduced PCA space. 

DIFS (di)
Euclid dp

10 20 50 100 150 200 250 300 400 490 

0.773 50 0.277 0.609 0.937 N/A N/A N/A N/A N/A N/A N/A 

0.807 100 0.271 0.581 0.854 0.954 N/A N/A N/A N/A N/A N/A 

0.817 150 0.276 0.573 0.814 0.909 0.960 N/A N/A N/A N/A N/A 

0.821 200 0.276 0.580 0.813 0.893 0.923 0.953 N/A N/A N/A N/A 

0.831 300 0.271 0.567 0.806 0.879 0.937 0.937 0.944 0.930 N/A N/A 

0.836 500 0.266 0.563 0.804 0.871 0.907 0.916 0.927 0.931 0.930 0.670 

0.840 700 0.267 0.560 0.803 0.869 0.907 0.920 0.926 0.931 0.927 0.911 

PCA

0.840 900 0.266 0.560 0.804 0.869 0.907 0.917 0.926 0.930 0.926 0.909 

Bayes on raw data 0.267 0.559 0.804 0.869 0.907 0.919 0.930 0.930 0.926 0.906 
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features. As shown in Fig. 10, using 10 features the first 

round recognition can achieve only 83.1% accuracy for 

the first rank. Selecting top 10 classes, after re-computing 

the discriminant features, the second round of recognition 

improve the first rank accuracy to 95.5%. This shows that 

the new features are much more efficient in 

discriminating the top 10 classes than the features 

computed from 700 class centers. 

To further demonstrate the effectiveness of the unified 

subspace analysis, we construct another data set using the 

FERET database. We use 100 people for testing. For each 

individual there are two face images in gallery, and 

another two taken in another session for probe. Even 

though the data size is much smaller, the recognition for 

images of different session is usually much more difficult 

than recognition of the same session data. Using the 200 

images in the gallery as training data, the LDA method 

only achieves an accuracy of 93%, since there are not 

enough training samples to accurately estimate the 

intrapersonal subspace. Using 668 face images that 

include the 200 images in the gallery but not the images 

in the probe set to estimate the intrapersonal subspace, the 

unified subspace analysis method achieves 100% 

accuracy using only a small number of features. 

6. Summary 

Starting from a new face difference model, we develop 

a unified framework for subspace analysis. Using this 

framework we discover how each subspace method 

contributes to the extraction of discriminating information 

in the face difference. This eventually leads to the 

construction of a 3D parameter space that use three 

subspace dimensions as axis. Within this parameter space, 

we develop a unified subspace analysis method that 

achieves much better recognition performance than the 

standard subspace methods. 
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      Figure 7. Accuracy curves for Bayesian 
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