Learning Semantic Scene Models by Trajectory Analysis

Xiaogang Wang, Kinh Tieu, and Eric Grimson

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

{xgwang, tieu, welgl}@csail.mit.edu

Abstract. In this paper, we describe an unsupervised learning framework to seg-
ment a scene into semantic regions and to build semantic scene models from long-
term observations of moving objects in the scene. First, we introduce two novel
similarity measures for comparing trajectories in far-field visual surveillance. The
measures simultaneously compare the spatial distribution of trajectories and other
attributes, such as velocity and object size, along the trajectories. They also pro-
vide a comparison confidence measure which indicates how well the measured
image-based similarity approximates true physical similarity. We also introduce
novel clustering algorithms which use both similarity and comparison confidence.
Based on the proposed similarity measures and clustering methods, a framework
to learn semantic scene models by trajectory analysis is developed. Trajectories
are first clustered into vehicles and pedestrians, and then further grouped based on
spatial and velocity distributions. Different trajectory clusters represent different
activities. The geometric and statistical models of structures in the scene, such as
roads, walk paths, sources and sinks, are automatically learned from the trajectory
clusters. Abnormal activities are detected using the semantic scene models. The
system is robust to low-level tracking errors.

1 Introduction

The visual surveillance task is to monitor the activity of objects in a scene. In far-field
settings (i.e., wide outdoor areas), the majority of visible activities are objects moving
from one location to another. Monitoring activity requires low-level detection, track-
ing, and classification of moving objects. Both high-level activity analysis and low-
level vision can be improved with knowledge of scene structure (e.g., roads, paths,
and entry and exit points). Scene knowledge supports activity descriptions with spa-
tial context, such as “car moving off road,” and “person waiting at bus stop.” Scene
information can also improve low-level tracking and classification [1]. For example,
if an object disappears, but not at an exit point, then it is likely a tracking failure in-
stead of a true exit. In classification, we can leverage the fact that vehicles are much
more likely than pedestrians to move on the road.

Complementary to the geometric description are the statistics of the scene. A statis-
tical scene model provides an a priori probability distributions on where, when, and
what types of activities occur. It also places priors on the attributes of moving ob-
jects, such as velocity and size. Figure 1(d), shows distributions of location and direc-
tion of vehicles on three paths.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 110— 2006.
© Springer-Verlag Berlin Heidelberg 2006



Learning Semantic Scene Models by Trajectory Analysis 111

(© (d)

Fig. 1. Examples of far-field scene structures. (a): Far-field scene S1; (b): Semantic regions
automatically learned in S1. (c): Far-field scene S2. Images of objects undergo substantial
projective distortion so that nearby pedestrians appear larger than far vehicles. (d): Automati-
cally learned spatial layout of three vehicle paths showing distributions of location and moving
direction, sources marked by cyan cross and sinks marked by magenta cross in S2.

One way to formally model a scene is to represent it as an attributed graph. Verti-
ces as regions and edges as paths represent the coarse structure and topology of the
scene. Attributes on vertices and edges further describe the geometry and statistics of
the scene. For example, a source (entry) vertex can be attributed with a mean location
and covariance, along with a birth probability. An edge joining a source and sink
(exit) can be attributed with the spatial extent of the path and its velocity distribution.
In far-field settings, we primarily deal with sources, sinks, and paths between them.

A scene model may be manually input, or possibly automatically extracted from
the static scene appearance. However, manual input is tedious if many scenes require
labeling, and static scene appearance has large variation and ambiguity. In addition, it
is difficult to handcraft the statistics of a scene, or to estimate them from static ap-
pearance alone. An example is shown in Figure 1(a)(b). From the image of scene S1,
we see one road. However, the road is composed of two lanes of opposing traffic
(cyan and red paths). The black path is a one-way u-turn lane. There are two entrances
on the left. Vehicles from these entrances wait in the orange region in Figure 1(b) and
cross the yellow region on the cyan lane in order to enter the red lane. Pedestrians
cross the road via the gray region. In this paper we show how this information can be
automatically learned by passive observation of the scene. Our method is based on
the idea that because scene structure affects the behavior of moving objects, the struc-
ture of the scene can be learned from observing the behavior of moving objects.

1.1 Our Algorithm

Gross positions and sizes of moving objects can be obtained from a blob tracker. A
moving object traces out a trajectory of locations and sizes from entry to exit. From



112 X. Wang, K. Tieu, and E. Grimson

long-term observation we can obtain thousands of trajectories in the same scene. We
propose a framework to cluster trajectories based on types of activities, and to learn
scene models from the trajectory clusters. In each cluster, trajectories are from the
same class of objects (vehicle or pedestrian), spatially close and have similar direc-
tions of motion. In Section 3, we first describe two novel trajectory similarity meas-
ures insensitive to low-level tracking failures, which compare:

(D) both spatial distribution and other features along trajectories: two trajectories are
similar if they are close in space and have similar feature distribution, e.g. velocity.
(IT) only particular features along trajectories, and augment trajectory similarity with a
comparison confidence measure. This is used to separate vehicle and pedestrian tra-
jectories by comparing object size. Under this measure, two trajectories are similar if
they have similar features, but need not be close in space. A low comparison confi-
dence means the observed similarity may not reflect true similarity in the physical
world. In far-field visual surveillance, images of objects undergo large projective
distortion in different places as shown in Figure 1(c). It is difficult to compare the size
of the two objects when they are far apart. The comparison confidence measure cap-
tures this uncertainty.

In Section 4, we propose novel clustering methods which use both similarity and
confidence measures, whereas traditional clustering algorithms assume certainty in
the similarities. Based on the novel trajectory similarity measures and clustering
methods, we propose a framework to learn semantic scene models summarized in
Figure 2. The method is robust to tracking errors and noise.

Input: a set of trajectories obtained by the Stauffer-Grimson tracker [2] from raw
video (trajectories may be fragmented because of tracking errors).

1. Cluster trajectories into vehicles and pedestrians based on size using trajec-
tory similarity measure II and clustering methods in Section 4.

2. Detect and remove outlier trajectories which are anomalous or noisy.

3. Further subdivide vehicle and pedestrian trajectories into different clusters
based on spatial and velocity distribution using trajectory similarity I.

4. Learn semantic scene models from trajectory clusters. In particular, sources
and sinks are estimated using local density-velocity maps from each clus-
ter, which is robust to fragmented trajectories.

5. Real-time detection of anomalous activity using the learned semantic scene
models.

Fig. 2. Summary of the scene model learning process

2 Related Work

Two path detection approaches can be found in [3][4]. Both iteratively merge trajecto-
ries into an expanded path. In many settings where observed trajectories are noisy and



Learning Semantic Scene Models by Trajectory Analysis 113

there are objects roaming between paths, the path regions will become increasingly
broader, finally merging into a single large path after long observation. In our frame-
work, trajectories can be well clustered even with the existence of noisy and outlier
trajectories. [3][4] ignored attributes along the trajectories.

A straightforward way to learn sources and sinks is to build Gaussian mixture
models from the start and end points of the trajectories [5][6]. However, tracking
sequences are often fragmented because of object interaction, occlusion, and scene
clutter. False entry/exit points caused by broken trajectories will bias the estimation of
sources and sinks. We solve this problem utilizing the fact that sources and sinks can
only appear at the two ends of a path. False entry/exit points inside the path region are
detected and removed by inspecting the local density-velocity distribution in a small
neighborhood.

There is a large literature on vehicle vs. pedestrian classification. Our work is re-
lated to [7][8] which used object positions in the scene to normalize object features
with projective distortion. In both previous approaches, spatial location was treated as
extra features for similarity, while in out method spatial location is used to calculate
the comparison confidence.

3 Trajectory Similarity

. . . (= - a a a a a
A trajectory is a sequence of observations A={a;}, where a, =< x{, y/, 8" >, (x{', y{")

are the spatial coordinates of the ith observation, and S is its feature vector, such as
object size and velocity.

3.1 Trajectory Similarity I

Considering two trajectories A={d,}and B= {l?,-}, for a observation a; on A, its near-
est observation on B is

wli)=arg min“(xfJ - x_l;,yi“ - y?)“
jeB

The directed spatial distance between A and B is

1
h(A,B)=— Z“(xfl—x.by(i)df—ynby(i))“» €Y)
Na ajcA

where N, is the observation number in A. This is similar to the modified Hausdorff

distance [9]. It is small when A is close to B in space. However, in some cases, we
want to distinguish two trajectories even though they are close in space. For exam-
ple, to separate a road and a walkway beside it, we need to distinguish vehicles and
pedestrians by their size difference. If we want to separate two lanes in opposite
moving directions, we have to distinguish trajectories with different velocities.
Therefore, we further compare other features along the trajectories, and the directed
distance is,



114 X. Wang, K. Tieu, and E. Grimson

f(A.B)= N_A Z(“xla - xyb/(i) Vi yll;/(i)“ + ?’d(ﬂia vﬂyl;(i) )) ) ()
aje

where d(f7, ﬂ,ﬁ(i)) is the dissimilarity measure between features S and /J’,fj(,-), and

y is a weighting parameter. The symmetric distance between A and B is

_[f(A.B) if h(A.B)<h(B,A)
F(A.B)= {f(B, A) if h(A,B)>h(B,A) 3
It is transformed to a similarity measure
S¢(A.B)=exp(-F(A,B)/ o). 4)

Under this measure, two trajectories are similar only if they are close in space and
their observations in nearby locations have similar attributes. In (3), we use a mini-
mum instead of the maximum used in the Hausdorff distance. Thus this measure can
handle broken trajectories caused by tracking errors. If A is a short broken trajectory
beside a long trajectory B, h(A, B) is small while A(B, A) is large. Under (3), the dis-
similarity between A and B could be small. It satisfies our expectation that all broken
trajectories on the same path should be grouped into the same cluster.

3.2 Trajectory Similarity II

The above similarity measure is inadequate for clustering all trajectories into two
classes, vehicles and pedestrians, by comparing size differences. Trajectories of the
same class are not necessarily close in space. Furthermore, features on the trajectories
cannot be directly compared because of different geometric and photometric trans-
formations in the scene. For example, vehicles are much larger than pedestrians, and
thus should be easily distinguished by size. However, as shown in Figure 1(c), be-
cause of projective distortion, some pedestrians close to the camera appear larger than
vehicles far away in the scene. Without knowledge of camera geometric parameters,
we only have the sense that if two objects are close in space, their observed image
size similarity reflects their true size similarity, since both objects undergo the same
geometric transform in the same place.

If two pedestrian trajectories are far apart or they are only close at some points,
such as A and C in Figure 3, their similarity will be small using the measure in
Section 3.1. In the former case, it is difficult to ascertain the true similarity because
of projective distortion. In the latter case, we can obtain similarity by comparing the
trajectories at intersection points, and ignoring other points which are far apart.
This leads us to augment the trajectory similarity measure with a comparison
confidence.

We first define the comparison confidence between two observations as

c(ﬁ,-,l;,-)= exp(_ “(x;‘ — by - y?)”/cﬁj . 6)



Learning Semantic Scene Models by Trajectory Analysis 115

A
C
B % 9T sz 03 ar o5 a5 o7 ws o8 |
Fig. 3. A, B, C are three trajectories in the Fig. 4. Transform functions from S to W,
same class. Because of projective distortion, setting C =0,0.1,0.2,...,0.9,1

A and B has low similarity, while C has
high similarity with both A and B.

To compare trajectories A and B, the directed similarity S, and comparison confi-
dence C,_,, are:

Sasp = Z ( bl//(l) y/(z)/ l//(z) (6)
ajeA ajeA
Cas= Y by /Y by ) )
ajeA ajeA

Here, s(a-,E (,-))zexp(—d Bf, ,B;;(l.) )/ 0'2) is the feature similarity between observa-
tions a; and by,(,) For each observation a; on trajectory A, we find its spatially
nearest observation b, w() On B, and compute the feature similarity s(a,,b,/,(,)) and

comparison confidence c(a,-,b,/,(,-)) . Along trajectory A, feature similarities of observa-
tions are averaged, weighted by the comparison confidences to get S,_,5 . The simi-

larity of observations close in space has larger weight for computing trajectory simi-
larity. C,_ 5 indicates how far apart A is from B. The symmetric similarity S(A, B)

and comparison confidence C(A,B) for trajectories are,

S(A,B)z {SA%B lf Cag >Cpsa , (8)
Spsa I Casp<Cpoa
C if C >C

C(A,B) - { A—B f A—B B—A ) (9)
Cpsa I Casp<Cpoia

The behavior of the comparison confidence measure in several typical cases is ana-
lyzed in [11].

4 Clustering with Confidences

Our clustering method is based on pairwise similarity. As mentioned in Section 3.2,
some measured similarities between samples may not well approximate the true



116 X. Wang, K. Tieu, and E. Grimson

similarity in the physical world. This makes traditional clustering methods inadequate
because they assume uniformly confident similarity values. For example, in Figure 3,
A, B and C are three trajectories in the same class. The observed similarity between A
and B may be low because they are far apart and there is projective distortion, and
comparison confidence is also low. C has high similarity with both A and B under our
similarity measure, since C intersects A and B. We should emphasize similarities with
high confidence, while ignore similarities with low confidence in the cost function.
Given the similarity S; and confidence C; between any pair of samples, the task is

to partition the sample set V into two subsets V; and V, . There are two ways to aug-
ment clustering methods using both similarity and comparison confidence measures:
(a) map similarity and confidence measures to a new weight measure, and then apply

traditional clustering methods, such as spectral clustering, to the new weight; (b)
modify the clustering cost function.

4.1 Remapping Weights

Let g be a function mapping §; and Cj; to a new weight, W; = g(S,-j,C,j). The key is
to preserve similarities with high confidence and leave low confidence similarities

uncertain. If the confidence is small, the weight should be set to a median value. We
compute W; as

W, = S, (10)
Y il-s,-j \Cij +8;50

The transform functions from similarity to weight given different confidence values
from O to 1 are shown in Figure 4. When we have no confidence in the similarity
(C =0), the weight is 0.5, providing little information for clustering. When we have
full confidence (C =1), the weight is exactly the similarity measure. When C changes
from O to 1, the transform function has a gradual change between the two extremes.
Before doing the transform, we first perform histogram equalization on the distribu-
tion of similarity values of all the samples in the data set, so that similarities have a
uniform distribution from O to 1. This normalization makes 0.5 a reasonable value for
zero confidence in similarity. Then we apply spectral clustering using the new
weights.

4.2 Modify the Clustering Criterion

Traditional clustering methods also can be augmented by including the comparison
confidence measure in the cost function. In this work we modify the average cut. Let
z be an N = IVl dimensional indicator vector, z; =1 if sample i is in V;, and z; =0 if

sample i is in V, . We propose the cost function as the average similarity of the edges

connecting V; and V,, weighted by the confidence measures:
>.CiSi ,

ievi,jev,  _z (D-0)z

Y da-ox

ieVy,jeVp

(11)

ave _cut(V},V,) =



Learning Semantic Scene Models by Trajectory Analysis 117

The goal is to find the optimal z minimizing ave_cur(V;,V,) . Here, Q =[Q; Inxn »
0 =C;iS;j» C=I[Cijlyxn - D and T are two NxN diagonal matrix with d and ¢ on

their diagonal, d(i)= ZQU , 1i)= chﬁi . Similar to the spectral clustering methods,
J J

(11) can be minimized by solving the generalized eigenvalue system. Because of the

space limit, we omit the proof. A detailed description can be found in [11].

5 Trajectory Clustering

5.1 Clustering Different Types of Trajectories (Vehicles vs. Pedestrians)

Scene structures and activities are often related to the class of objects, we first cluster
trajectories into vehicles and pedestrians using the similarity and confidence measure
proposed in Section 3.2 and the clustering methods in Section 4. The feature similar-
ity between observations in (6), is defined as

a_ by
s(a:.b;)=exp —[(”—’-’J/az i (12)

a b
I

b . . _
where 7 and r; are the sizes of observations @, and b;. We set parameter

0, =0,=0.011in (5) and (12).

5.2 Clustering Activity Group

Each class of trajectories, vehicles or pedestrians, is further clustered according to
different spatial and velocity distributions. We define the trajectory similarity as de-
scribed in Section 3.1, considering velocity direction along the trajectories. Dissimi-
larity between observation features in (2) is

al e )1 L) (13)
LRGN T

—=a
Vi

=da
Vi

is normalized to 1 and parameter y in (2) is set to 0.25. Spectral clustering is applied
using the defined trajectory similarity.

Before clustering, we first remove outlier trajectories. Usually these are noisy tra-
jectories caused by tracking errors, anomalous trajectories, e.g., a car drives out of the
way, or some pedestrians roaming between different paths. In visual surveillance,
they may be of particular interest, and it is nice that our algorithm can detect them by
comparing trajectories. Because they are not strongly constrained by scene structures,
the scene structure models will be learnt more accurately by removing them. For each
trajectory A, we find its N nearest trajectories B; (i=1,...,N), and compute the aver-

and ﬁylj(j) are the velocities of g; and l;,/,(i). The width and the height of the scene

age distance. We reject trajectories with large average distance to neighbors as
outliers.



118 X. Wang, K. Tieu, and E. Grimson

Table 1. Results of clustering trajectories into vehicles and pedestrians. I: compare average
observation size along the trajectory and use spectral clustering; II: compare more observa-
tion features, (size, speed, size variation, aspect ratio and percentage occupancy of silhou-
ette), also averaged along the trajectory; III: size similarity defined in (2)(3)(4) without
considering comparison confidence; IV: compare trajectory distance in space as define in
(1); V: combine size similarity and comparison confidence as described in Section 3.2 and 4.

Method Scene Cluster Vehicle Pedestrian
Cluster 1 127 0
S1
Cluster 2 42 368
1
Cluster 1 55 2
S2
Cluster 2 14 16
S Cluster 1 162 154
Cluster 2 7 214
11
Cluster 1 65 0
S2
Cluster 2 4 18
S Cluster 1 152 0
Cluster 2 17 368
111
Cluster 1 61 0
S2
Cluster 2 8 18
S Cluster 1 166 242
Cluster 2 3 126
v
Cluster 1 40 8
S2
Cluster 2 29 10
S Cluster 1 167 0
Cluster 2 2 368
\'
Cluster 1 69 0
S2
Cluster 2 0 18

5.3 Experiments

In Table 1, we report the results of clustering trajectories into vehicles and pedestrians
using different clustering methods and similarity measures. There are two data sets
from the two scenes shown in Figure 1. We show the numbers of vehicle and pedes-
trian trajectories in each cluster. The average observation size along the trajectory
cannot separate vehicles and pedestrians, since there is overlap between the size



Learning Semantic Scene Models by Trajectory Analysis 119

distributions of the two classes. In method II, we add more features, such as speed,
size variation, aspect ratio and percentage occupancy of silhouette, which proved
effective in vehicle/pedestrian classification [8], to compute the similarity. Although
these discriminative features work well in supervised classification using some com-
plex classifiers, they are not effective in clustering. Our two clustering approaches in
Section 4.1 and 4.2 using both similarity and confidence measures give the same
result on this data set. They perfectly separate vehicle and pedestrian trajectories in
Scene S2, and incorrectly cluster only two among 537 trajectories in Scene S1. If we
only use the size similarity measure as define in (2)(3)(4), or only compare spatial
distance as defined in (1), the result is worse. Note that our method is essentially un-
supervised and only requires labeling a cluster as vehicle or pedestrian.

(a) (b) () (d)

Fig. 5. Clustering vehicle and pedestrian trajectories in Scene S1. (a): outlier vehicle trajecto-
ries in red; (b): six vehicle trajectory clusters (c): outlier pedestrian trajectories in red; (d): five
pedestrian clusters.

The separated vehicle trajectories and pedestrian trajectories are further clustered
into different activity groups. Some results from scene S1 are shown in Figure 5. The
vehicle trajectories are clustered into six clusters. Because the road has two opposite
driving directions, the trajectories on the two lanes are separated into cyan and red
clusters. The vehicles from the two entrances on the left of the scene enter the road
along three different paths. The black clusters detect the one-way road and u-turn in
the upper center of the scene. Most of the pedestrian trajectories crossing the road and
roaming between the two walk paths are first removed as outlier trajectories. The
remaining pedestrian trajectories are well clustered into five clusters on the two walk
paths aside the road and one path crossing the road, because there are two opposite
moving directions on each walk path aside the road.

6 Learning Semantic Scene Models

6.1 Road and Walk Path Models

For each cluster €, we detect its spatial extent in the scene, and estimate the density
and velocity direction distributions in the region. The density at position (x,y) is

Pa (x, }’) = Z Z¢((;?f)),;‘) ’ (o

acA AeQ

estimated as,



120 X. Wang, K. Tieu, and E. Grimson

2

where ¢ —exp| - x—x,y=y*)| /o5 |. The velocity direction distribution at

a a p i YT Yi 3 y
(Xl' Vi ) i

(x,y) is modeled as a circular normal (von Mises) distribution [12],

e O—-ag (x,y)

== 1
p(6) 2, (0 15)

with mean o (x,y) computed by

PIPIvoR i

a,cAAcQ 170

Z Z¢(xa’)a cos 6/

ajeAAcQ

ag(x,y) = arctan = (16)

where 6/ is the angle of velocity direction at a; .

The path region is obtained by thresholding the density distribution, using
max Pyo(x,y)/10. Experimental results on scene S1 are shown in Figure 1(a)(b). The
vehicles and pedestrian paths are shown in Figure 1(a). Using some logical operations
on the path regions of different clusters, some semantic regions are obtained. In
Figure 1(b), the cyan and red regions are two lanes on the main road in the scene. The
black color marks a u-turn. When the vehicles merge from two entrances on the left of
the scene, they wait in the orange region before entering the road, and cross the yel-
low region on the cyan road in order to be on the red road. The purple region has a
similar semantic explanation. Pedestrians cross the road via the gray region.

6.2 Sources and Sinks

Two interesting scene structures are locations where vehicles or pedestrians enter or
exit the scene. They are called sources and sinks. Trajectories are often broken be-
cause of inevitable tracking failures. There are false entry/exit points biasing the esti-
mation of sources and sinks as shown in Figure 7(a). We remove them using the local
density-velocity map. Sources and sinks should be on the two ends of the path re-
gions. A false entry/exit point inside the path region has high density around its
neighborhood, since there are many other trajectories passing through this point. In

(@) (b) (c)

Fig. 6. Removing break points in trajectory clusters. (a): Find local path of the red point based
on velocity distribution; (b): Examples of entry point (A), exit point (C), false entry/exit point
(B) on cluster density map; (c): Density distributions along local paths of A, B, C.



Learning Semantic Scene Models by Trajectory Analysis 121

(a) Gaussian mixture models of sources (b) Gaussian mixture models of sources
and sinks directly learnt from the start  and sinks learnt from the trajectory clus-
and end points of trajectories. ters after removing break points.

Fig 7. Learning vehicle sources and sinks models in Scene S1

each trajectory cluster, starting from a start/end point of the trajectory, we find its
local path by searching forward and backward L steps. On the local path, the next
point is decided by the average velocity direction at the current position as shown in
Figure 6 (a). In Figure 6 (b), we sample an entry point (A), an exit point (C), and a
false entry/exit point (B) on the density map of one trajectory cluster. We can clearly
see their difference on density distribution along the local path. The entry point has a
very low density along the path behind it. The exit point has a very low density along
the local path ahead of it. A false entry/exit point has little change on density along
the whole local path, since trajectories in the same cluster have similar moving direc-
tions and they do not diverge. We distinguish them comparing the average densities
of the two halves of the local path. Results are shown in Figure 7.

6.3 More Experimental Results

More experimental results of learning semantic scene models in scene S2 and S3 are
shown in Figure 1(c)(d) and Figure 8. In S3, there is a red pedestrian path crossing the
road, however, it is not the crosswalk beside it. People tend to take a short cut instead
of using the crosswalk. This is one illustration of how our learnt scene models can
provide additional information unavailable from the static image.

R S e
g wilat -

(a) Vehicles (b) Pedestrians

Fig. 8. Extract paths, sources and sinks of vehicles and pedestrians in Scene S3. Path bounda-
ries are marked by different color, the source and sink centers are marked by cyan and magenta
crosses. The yellow ellipses indicate the estimated extent of sources/sinks.



122 X. Wang, K. Tieu, and E. Grimson

7 Abnormal Trajectory Detection

As mentioned in Section 5, anomalous trajectories can be detected as outlier samples.
In Figure 9 (a), outlier vehicle trajectories in S3 are marked by different colors. The
green trajectory is a car backing up in the middle of the road. The car on the red tra-
jectory first drives along the purple path in Figure 9(a), then it turns left, crosses the
red path on its left side, and has opposite moving direction with the trajectories in the
cyan cluster. So it is detected as an anomalous trajectory.

We further develop the system to real-time detect anomalous activity. When an ob-
ject enters the scene, we classify it into vehicle or pedestrian. For each vehi-
cle/pedestrian class, we model the density and velocity direction distributions in the
scene as mixture models, since we have built the statistical model for each cluster in
Section 7. When the object passes a location, a likelihood is computed, so we can
monitor the object at each position without requiring the whole trajectory data. In
Figure 9 (b) we plot the log likelihood of the red trajectory in Figure 9(a) at different
locations. The probability is very low when it turns left crossing the red path.

0 01 02 03 04 05 06 07 08 09 1

(a) (b)

Fig. 9. Detect anomalous trajectories in S3. (a): outlier trajectories; (b): transform the log-
likelihood into density map. The white color indicates low probabilities (highly anomalous).

8 Discussion

We described a framework to learn semantic scene models by trajectory analysis.
Trajectories related to different kinds of activities are separated into different clusters
using novel trajectory similarity measures, and clustering methods with similarity and
comparison confidences. The scene semantic models are applied to anomalous activ-
ity detection. We believe there are further applications of our learned scene model
such as more complex activities across longer time scales and involving multiple
objects. Finally, our notion of clustering with confidences deserves further study and
may be applicable to other areas of computer vision and statistical modeling.

Acknowledgement

The research described in this paper was supported in part by funding from DARPA.



Learning Semantic Scene Models by Trajectory Analysis 123

References

(1]

(2]
(3]
(4]
(5]

(6]
(7]
(8]
(9]
[10]
[11]

[12]

R. Kaucic, A. Perera, G. Brooksby, J. Kauthold, and A. Hoogs, “A Unified Framework
for Tracking through Occlusions and across Sensor Gaps,” in Proceedings of CVPR
2005.

C. Stauffer and E. Grimson, “Learning Patterns of Activity Using Real-Time Tracking,”
IEEE Trans. on PAMI, Vol. 22, No. 8, pp. 747-757, 2000.

D. Makris and T. Ellis, “Path Detection in Video Surveillance,” Image and Vision Com-
puting, Vol. 20, pp. 859-903, 2002.

J. H. Fernyhough, A. G. Cohn, and D. C. Hogg, “Generation of Semantic Regions from
Image Sequences,” in Proc. of ECCV, 1996.

D. Makris and T. Ellis, “Automatic Learning of an Activity-Based Semantic Scene
Model,” in Proc. of IEEE Conference on Advanced Video and Signal Based Surveillance
2003.

S. J. Mckenna and H. Nait-Charif, “Learning Spatial Context from Tracking Using Pe-
nalized Likelihood,” in Proc. of ICPR, 2004.

B. Bose and E. Grimson, “Improving Object Classification in Far-Field Video,” in Proc.
CVPR, 2004.

C. Stauffer, “Minimally-Supervised Classification using Multiple Observation Sets,”
ICCV 2003.

M. P. Dubuisson and A. K. Jain, “A Modified Hausdorff distance for Object Matching,”
in Proc. of ICPR, 1994.

M. Meila and J. Shi, “A Random Walk View of Spectral Segmentation,” in Proc. of
AISTATS, 2001.

X. Wang, K. Tieu, and E. Grimson, “Learning Semantic Scene Models by Trajectory
Analysis,” Tech. Rep. MIT-CSAIL-TR-2006-08, http://hdl.handle.net/1721.1/31208.

E. J. Gumbel and J. A. Greenwood “The Circular Normal Distribution: Theory and Ta-
bles,” J. Amer. Stat. Soc., Vol. 48, No. 261,, pp. 131-152, 1953.



	Introduction
	Our Algorithm

	Related Work
	Trajectory Similarity
	Trajectory Similarity I
	Trajectory Similarity II

	Clustering with Confidences
	Remapping Weights
	Modify the Clustering Criterion

	Trajectory Clustering
	Clustering Different Types of Trajectories (Vehicles vs. Pedestrians)
	Clustering Activity Group
	Experiments

	Learning Semantic Scene Models
	Road and Walk Path Models
	Sources and Sinks
	More Experimental Results

	Abnormal Trajectory Detection
	Discussion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




