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Abstract

Visual appearance score, appearance mixture type and
deformation are three important information sources for
human pose estimation. This paper proposes to build a
multi-source deep model in order to extract non-linear
representation from these different aspects of information
sources. With the deep model, the global, high-order hu-
man body articulation patterns in these information sources
are extracted for pose estimation. The task for estimat-
ing body locations and the task for human detection are
jointly learned using a unified deep model. The proposed
approach can be viewed as a post-processing of pose esti-
mation results and can flexibly integrate with existing meth-
ods by taking their information sources as input. By extract-
ing the non-linear representation from multiple information
sources, the deep model outperforms state-of-the-art by up
to 8.6 percent on three public benchmark datasets.

1. Introduction
Human pose estimation is the process of determining,

from an image, the positions of human body parts such as
the head, shoulder, elbow, wrist, hip, knee, and ankle. It
is a fundamental problem in computer vision and has abun-
dant important applications such as sports, action recogni-
tion, character animation, clinical analysis of gait patholo-
gies, content-based video and image retrieval, and intelli-
gent video surveillance. Despite many years of research
[49, 51, 1, 39, 5, 54, 53], pose estimation remains a diffi-
cult problem. One of the most significant challenges in pose
estimation is how to model the complex human articulation.

Many approaches have been used to handle the com-
plex human articulation by using three information sources:
mixture type, appearance score and deformation [54, 49, 51,
10, 55]. Influenced by human body articulation, clothing,
occlusion etc., body part appearance varies. To handle this
variation, the appearance of a part is clustered into multiple
mixture types as shown in Fig. 1 . For each mixture type of
a part, a part template is learned to capture its appearance.
Then the appearance scores (log-likelihoods) of body parts

Multi-source
deep model

Estimated result

Type 1 Type 2

Non-Linear model?

YesNo

Estimated result

Mixture type

Head 
top

Neck

Deformation
Appearance 

score

Template

Linear model

1389

Figure 1. The motivation of this paper in using multi-source deep
model for constructing the non-linear representation from three in-
formation sources: mixture type, appearance score and deforma-
tion. Best viewed in color.

being at different locations are obtained by convolving the
part templates with the visual features of the input image,
e.g. HOG [6]. The appearance scores are inaccurate for
well-locating body parts because the part template is imper-
fect. Therefore, the deformations (relative locations) among
body parts are used as for encoding likely pairwise poses;
for example, the head should not be far from the neck.

Existing approaches use log-linear models with pairwise
potentials of these three information sources [49, 51, 39, 54,
53] to determine whether an estimated location is correct.
However, these information sources are not log-linearly cor-
related when choosing the correct candidate. For the exam-
ple in Fig. 1, linear models may find that the estimated
result on the left and the result on the right have the same
deformation score because they simply linearly add local
deformation cost. While it is obvious for human to find that
the result on the left is not reasonable. Similar situations
also occur for mixture type and appearance score. There-
fore, it is desirable to construct the non-linear representation
that identifies reasonable configurations of deformation, ap-
pearance score and mixture type.

In order to construct useful representation from multi-
ple information sources for pose estimation, a model should
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satisfy certain properties. First, the model should capture
the global, complex relationships among body parts. For
the example in Fig. 1, the result on the left is unreasonable
because of its global configuration in arm, torso, and leg.
Second, since reasonable configuration is a very abstract
concept while the information sources are less abstract con-
cepts, the model should construct more abstract representa-
tion from the less abstract representation. Third, since dif-
ferent information sources describe different aspects of hu-
man pose and have different statistical properties, the model
should learn useful representation from these sources and
fuse them into a joint representation for pose estimation.
The multi-source deep architecture we propose satisfies the
above requirement.

There are three contributions of this paper.
1. We propose a deep architecture to construct the non-

linear representation from different aspects of informa-
tion sources. To the best of our knowledge, this paper is
the first to use deep model for pose estimation.

2. The body articulation patterns (global and more abstract
representations) are captured by the deep model from the
information sources (local and less abstract representa-
tions). For each information source, more abstract repre-
sentation at the higher layer is composed by the less ab-
stract representation of all body parts in the lower layer.
Then representations of all information sources in the
higher layer are fused for pose estimation.

3. Both the task for detecting human and the task for esti-
mating body locations are jointly learned using a single
deep model. Joint learning of these tasks with a shared
representation improves pose estimation accuracy.

2. Related work
Human pose estimation. Pose estimation is considered as

holistic recognition in [14, 32, 33]. On the other hand, many
recent works use local body parts [49, 51, 10, 55, 8, 12, 46,
39, 1, 40, 20, 44, 52] in order to handle the many degrees
of freedom in body part articulation. Since the first work in
[54], some approaches [49, 51, 10, 55, 8] have clustered part
appearance into mixture types as shown in Fig. 1. There
are also approaches that warp the part template by flexible
sizes and orientations [12, 46, 39, 1, 40, 20, 44, 52]. The
appearance score, rotation, size, and location used in these
approaches can be treated as multiple information sources
and used by our deep model for pose estimation.

In existing pose estimation approaches, the pair-wise
part deformation relationships are arranged in tree models
[49, 51, 1, 39, 54], multi-tree model [52], or loopy mod-
els [53, 50, 9]. Tree models allow for efficient and exact
inference but are insufficient in modeling the complex re-
lationships among body parts. Hence, tree models often
suffer from double counting; for example, given the posi-
tion of a torso, the positions of two legs are independent

and often respond to the same visual cue. Loopy models
allow more complex relationships among parts, but require
approximate inference. Our deep architecture models the
complex relationships among parts and is computationally
efficient in both training and testing.

Deep learning. Since the breakthrough in deep learning
initiated by G. Hinton in [17, 18], deep learning is gain-
ing more and more attention. Bengio [2] proved that exist-
ing commonly used machine learning tools such as SVM
and Boosting are shallow models, and they may require
many more computational elements, potentially exponen-
tially more (with respect to input size), than deep mod-
els whose depth is matched to the task. Deep architec-
ture is found to yield better data representation, for exam-
ple, in terms of classification error [24], invariance to input
transformations [15], or modeling multi-modal data [34].
Deep learning has achieved spectacular progress in com-
puter vision [43, 19, 25, 35, 22, 56, 11, 41, 38, 48, 47, 57,
37, 36, 29, 31, 30, 28, 58, 27]. Recent progress on deep
learning is reviewed in [3]. Krizhevsky et al. [22] pro-
posed a large-scale deep convolutional network [26] with
breakthrough on the large-scale ImageNet object recogni-
tion dataset [7], attaining a significant gap compared with
existing approaches that use shallow models, and bringing
high impact to research in computer vision. Our approaches
in [37, 38, 36, 28] learns feature learning, translational de-
formation, and occlusion relationship in pedestrian detec-
tion; the approach in [48] learns relational filter pairs in face
verification. To the best of our knowledge, however, deep
model for human pose estimation has not yet been explored.

Our work is inspired by multi-modality models that learn
from multiple modalities such as audio, visual, text data [34,
45, 16]. In contrast to these works, we investigate multi-
source learning from single modality, which is image data
in pose estimation.

3. Pictorial structure model for pose estimation
The model introduced in this section is used to provide

our deep model with information sources. Pictorial struc-
ture model considers human body parts as nodes tied to-
gether in a conditional random field. Let lp for p = 1, . . . , P
be the configuration of the pth part. The posterior of a con-
figuration of parts L = {lp|p = 1 . . . P} given an image I
is:

P (L|I) ∝ exp
( P∑
p=1

φ(I|lp)) +
∑

(p,q)∈E

ψ(lp, lq)
)
. (1)

ψ(lp, lq) is the pair-wise term that models the geometric
deformation constraint on the pth and qth parts; for exam-
ple, head shall not be too far from torso. The edge set de-
noted by E is arranged in tree models [49, 51, 1, 39, 54, 10]
or loopy models [53, 9, 50].



φ(I|lp) is the unary term that models the appearance of
lp. The appearance varies as body articulates. To model
this variation, lp = {sp, θp, zp} and φ(I|lp) specifies the
part appearance warped by size sp, orientation θp at loca-
tion zp in [1, 39, 12]. Alternatively, Yang and Ramanan
propose to use appearance mixture type tp for approximat-
ing the variation in rotation θp and size sp in [54]. In this
model, lp = {tp, zp} and φ(I|lp) specifies the part appear-
ance with mixture type tp at location zp. The appearance of
a part is clustered into multiple appearance mixture types as
shown in Fig. 1. The overall model in [54, 55] is as follows:

P (L|I) ∝ exp
(
S(I, t, z)

)
, (2)

where S(I, t, z) = Sc(t) +
∑
p,q

Sd(t, z, p, q) +
∑
p

Sa(I, tp, zp),

Sc(t) =
∑
p

b
tp
p +

∑
p,q

b
tp,tq
p,q , (3)

Sd(t, z, p, q) = w
tp,tq
p,q

T
d(zp − zq), (4)

Sa(I, tp, zp) = w
tp
p

T
f(I, zp). (5)

• Sc(t) is the pair-wise compatibility term that models the
compatibility/co-occurrence of mixture types.

• Sd(t, z, p, q) is the pair-wise deformation term that mod-
els the geometric deformation constraints on the pth and
qth parts. d(zp − zq) = [dx, dy, dx2dy2]

T.
• Sa(I, tp, zp) is the unary appearance term that computes

the score of placing a template wtp
p at location zp of the

HOG feature map for image I , denoted by f(I, zp).
Linear SVM is used to learn the linear weights wtp

p ,w
tp,tq
p,q

and compatibility biases btpp , btp,tqp,q . The model in Eq.(2)-(5)
is used in many approaches, with different implementations
on edge set, part size, and part locations [49, 51, 54, 9, 10,
55].

4. The multi-source deep model

An overview of our framework in the testing stage is
shown in Fig. 2. In this framework, an existing approach
is used to generate candidate body locations with conserva-
tive thresholding. In the experiment, the existing approach
is the off-the-shelf approach in [55]. A multi-source deep
model is then applied to a candidate of all body locations
in order to determine whether its body locations are correct.
Simultaneously, the body locations of this candidate is esti-
mated.

One direct approach with which to train a multi-source
model is to train a deep model over the concatenated infor-
mation sources as shown in Fig. 3(a). This approach is lim-
ited because information sources with different statistical
properties are mixed in the first hidden layer. A better so-
lution is to have their high-level representations constructed
before they are mixed. Therefore, we use the architecture
as shown in Fig. 3(b), in which each information source
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Figure 2. Framework in the testing stage. The existing approach is
used to generate multiple candidate locations. A candidate is used
as the input to a deep model to determine whether the candidate is
correct and estimate body locations. Best viewed in color.
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Figure 3. Direct use of deep model (a) and the deep architecture
we propose (b) for part score s, deformation d and mixture type t.
Best viewed in color.

is connected to two layers for constructing high level rep-
resentation individually. High-level representations of dif-
ferent information sources are then fused using other two
layers for pose estimation.

4.1. Inference

The mixture type information t in Fig. 3 is taken from
the t in (3). The relative positions among parts, denoted
by d, comes from the deformation information d(zp − zq)
in (4). The appearance scores, denoted by s, is obtained
from the unary appearance term in (5). In our experiment,
s, t, and d are obtained using the approach in [55]. At the
inference stage, the model is as follows:

h1,1 = a(sTW1,1 + b1,1), (6)

h1,2 = a(dTW1,2 + b1,2), (7)

h1,3 = a(tTW1,3 + b1,3), (8)

h2,u = a(h1,uT
W2,u + b2,u), u = 1, 2, 3, (9)

h2 = [h2,1T
h2,2T

h2,3T
]T, (10)

h3 = a(h2T
W3 + b2), (11)

ỹcls = σ(h3T
wcls + bcls), (12)

ỹpst = h3T
Wpst + bpst. (13)

• σ(x) = (1 + exp(−x))−1 is the sigmoid function.
• a(∗) is the point-wise non-linear activation function, for

which sigmoid function can be used.
• W∗ and wcls connect nodes between adjacent layers.
• b∗ and bcls are biases.



• h∗ are hidden nodes in different layers used for extract-
ing non-linear representations from s, d, and t.

• ỹcls is the estimated label indicating whether the candi-
date of body locations is correct. For pose estimatio of
single human, the candidate with the largest ỹcls is used
as the final output in our experiments.

• ỹpst contains the estimated part locations.
Through the first two separate layers in Eq. (6)-(9), each
information source has its individual representation con-
structed. Then all high-order representations are combined
by two layers in Eq. (11)-(13).

4.2. Training method

Denote the parameter set for the model in Eq. (6)-(13) by
λ, λ = {W∗,wcls,b∗, bcls}. The objective function J(λ)
for backpropagating error derivatives is as follows:

J(λ) =
∑
n

(
J1(y

cls
n , ỹclsn ) + yclsn J2(y

pst
n , ỹpst

n )
)

+ J3(W
∗,wcls), (14)

J1(y
cls
n , ỹclsn ) =− yclsn log(ỹclsn )− (1− yclsn ) log(1− ỹclsn ),

J2(y
pst
n , ỹpst

n ) =||ypst
n − ỹpst

n ||2,

J3(W
∗,wcls) =

∑
i,j

|w∗i,j |+
∑
i

|wcls
i |, (15)

where ∗n denotes the nth sample, n = 1, 2, . . . N .
• ỹclsn and ỹpst

n are computed using Eq. (6)-(13).
• yclsn ∈ {0, 1} is the ground truth classification label in-

dicating whether the current body location estimation is
correct or not. Positive training samples have their part
templates placed around annotated body locations. As in
[55], negative training samples have their part templates
placed on images without human. Therefore, ycls can be
used for human detection by considering it as an indi-
cator on whether the rectangle covering body locations
contains a human.
• J1(yclsn , ỹclsn ) is the cross-entropy error on classification.
• ypst

n contains the ground truth body locations.
• J2(ypst

n , ỹpst
n ) is the sum of square error on body loca-

tion estimation. Since negative background samples do
not have ground truth body location, the yclsn is multi-
plied by J2 in (14) to ensure that only positive samples
are used to learn location estimation.

• J3(W∗,wcls) is the L1 norm regularization term. w∗i,j
is the (i, j)th element in W∗ and wcls

i is the ith and
element in wcls. The information sources and hidden
nodes may have different purpose. For example, a node
in h3 may use the information source mixture type.
Hence, J3(W∗,wcls) is used to encourage sparsity in
the weights.

Body part location estimation and human detection are both
learned through shared representation in this model. They
are jointly learned because they are dependent tasks.

4.3. Analysis

The mixture type t is used as an example for analysis. In
the layer-wise pre-training stage [17], t and hidden vector
h1,3 are considered as a restricted Boltzmann machine with
the following distribution:

p(t,h1,3) ∝ exp(tTW1,3h1,3 + b1,3T
h1,3 + cTt). (16)

Denote the jth column of W1,3 by w1,3
∗,j . Denote the jth

element of b1,3 by bj . The marginal distribution p(t) can
be obtained as follows:

p(t) =
∑
h1,3

p(t,h1,3)

∝
∑
h1,3

exp(tTW1,3h1,3 + b1,3T
h1,3 + cTt) (17)

∝ exp(cTt)
∏
j

(
1 + exp(tTw1,3

∗,j + bj)
)
=
∏
j

φj(t),

where φj(t) = 1 + exp(tTw1,3
∗,j + bj) and φj(t) is a fully

connected graphical model because it cannot be factorized.
φj(t) can be considered as a factor that explains t in fac-
tor graph [4, 23]. In pose estimation, φj(t) can be con-
sidered as a global pattern explaining the mixture type t
for all parts. In both training and inference stages, every
node in h1,3 is connected to the mixture types of all parts.
Therefore, h1,3 nonlinearly extracts the global representa-
tion from t1,3. Similarly, the h2,3 extracts higher-level rep-
resentation from h1,3. Therefore, the stack of hidden layers
extracts global, high-level representation from the informa-
tion source t. The analysis to mixture type t is applica-
ble to deformation and appearance score. As shown in Fig.
4, h2,3 captures the global articulation patterns of human
body. One of the nodes in h2,3 has high response to people
squat. Another node has high response to people standing
upright. Yet another node concisely captures two clusters of
pose patterns.

In our deep model, the first hidden layer has 200 hidden
nodes, the second layer, i.e. h2 in Eq. (10) has 150 hidden
nodes and the third layer, i.e. h3 in Eq. (11), has 100 hidden
nodes. Since the dimensions of s, d, and t are small, train-
ing of the deep model is fast. Unlike loopy graphical mod-
els, the deep model is fast in the inference stage because it
does not require loopy belief propagation or sampling. The
extra testing time required by our deep model is less than 10
percent of the testing time required by the approach in [55].

5. Experimental results

The proposed approach is evaluated on three datasets:
LSP [20], PARSE [42] and UIUC people [50]. The train-
ing procedure and training set are the same as [55]. Positive



Figure 4. Visualization of mixture-type patterns extracted by hid-
den nodes in h2,3. We use the approach in [25] and visualize train-
ing samples with the largest responses on each hidden node. Sam-
ples with the highest responses are placed at the upper-left corner.
Hidden node 1 has high response to people squat. Node 2 has high
response to standing people. Node 3 has high response to two
clusters of pose patterns. Best viewed in color.

training samples are constrained to have estimated part lo-
cations near the ground truth. Part of the training data is
used for validation.

5.1. Evaluation criteria

In all experiments, we use the most popular criterion,
which is the percentage of correctly localized parts (PCP)
introduced in [13]. As stated in [40, 55], the PCP scoring
metric has been implemented in different ways in different
papers. These differences have two dimensions.
1. There are two ways to compute the final PCP score

across the dataset. In the single way, only a single candi-
date (given by the maximum scoring candidate of an al-
gorithm) for one image is used. The match way matches
multiple candidates without penalizing false positives.

2. There are two definitions of a correct part localization.
For the definition both, it requires both end points of a
part (for example, end points wrist and elbow for the
part lower arm) to be correct. For the definition avg, it
requires only the average of the endpoints to be correct.

The paper in [51, 54, 49] used ‘match+avg’. The paper in
[39, 1, 40] used ‘single+both’, which is the strictest case
and generally has lower PCP value. The paper in [9] pro-
vides results for ‘match+both’ and ‘match+avg’. We follow
[40, 39] and evaluate all approaches using the strictest ‘sin-
gle+both’ criterion. This is used because of the following
reasons:
1. For ‘single’ and ‘match’, as discussed in [55], the

‘match’ way gives unfair advantage to approaches that
produce a large number of candidates because mis-
matched candidates (false positives) are not penalized.

2. For ‘both’ and ‘avg’, ‘both’ is better at describing the
orientation of body parts and will facilitate the use of

pose estimation for future applications. For example, in
character animation, the rendering of a limb is possible
only when both end points of the limb are correct.
We follow [10, 39] and use the observer-centric anno-

tations for all approaches when we evaluate on the LSP
dataset.

5.2. Overall experimental results

Table 1 shows the experimental results from the three
datasets.

Pishchulin’s approach in [39] used the LSP+PARSE
training set when evaluated on the PARSE dataset and used
the UIUC+LSP training set when evaluated on the UIUC
dataset. To evaluate on the PARSE dataset, Pishchulin’s
approach [39] + [40] included LSP+PARSE and 2744 ex-
tra animated samples for training. Johnson’s approach in
[21] included 10,000 extra training samples when evaluated
on the PARSE dataset. In all experiments, Andriluka’s ap-
proach in [1], Yang and Ramanan’s approach in [54, 55] and
our approach are trained on the 1000 training images of the
LSP dataset [20].

As shown in Table 1, our deep model obviously improves
the pose estimation accuracy and outperforms all the state-
of-the-art on these three datasets. Specifically, our approach
is better in detecting legs, arms and head compared with ex-
isting approaches. The approach of Pishchulin et al. [40] is
better than our approach in locating torso, possibly because
the torso region is included in many poslets, which helps to
increase the accuracy of their approach in locating torso.

Our approach is complementary to existing approaches
because the information sources provided by these ap-
proaches can be used by our model to improve their re-
sults. Currently, our model uses the approach in [55] to
obtain information sources. Compared with the approach in
[55], our approach improves the pose estimation accuracy
by 5.8% (62.8% vs. 68.6% PCP), 7.4% (63.6% vs. 71.0%
PCP) and 8.6% (57.0% vs. 65.6% PCP) respectively on the
LSP, PARSE and UIUC datasets. Fig. 5 shows the compar-
ison between our approach (left) and the approach in [55]
(right).

5.3. Results on different designs of deep models

In this section, we evaluate different designs of deep
models. Yang and Ramanan’s approach in [55] is used as
the baseline because this approach is used by our model for
obtaining information sources. To be concise, we only refer
to the PCP results on the LSP dataset.

Depth of model is investigated in Table 2. The approach
in [55] uses linear-SVM for combining information sources.
We also trained a Kernel-SVM with RBF kernel for learn-
ing a non-linear model using the off-the-shelf tool Libsvm.
The difference in PCP between Linear SVM and kernel-
SVM is within 2% (62.8% vs. 64.2% on LSP). Bengio [2]



Table 1. Pose estimation results (PCP) on LSP [20], UIUC people
[50] and PARSE [42].

Method Torso U.leg L.leg U.arm L.arm head Total
LSP

Andriluka et al. [1] 80.9 67.1 60.7 46.5 26.4 74.9 55.7
Yang&Ramanan [54] 81.0 69.5 65.9 53.5 35.8 76.8 60.7
Yang&Ramanan [55] 82.9 70.3 67.0 56.0 39.8 79.3 62.8
Pishchulin et al. [39] 87.5 75.7 68.0 54.2 33.9 78.1 62.9

Eichner&
Ferrari [10] 86.2 74.3 69.3 56.5 37.4 80.1 64.3

Ours 85.8 76.5 72.2 63.3 46.6 83.1 68.6
PARSE

Andriluka et al. [1] 86.3 66.3 60.0 54.6 35.6 72.7 59.2
Yang&Ramanan [54] 83.4 68.8 60.7 59.8 40.7 83.4 62.7
Yang&Ramanan [55] 82.9 68.8 60.5 63.4 42.4 82.4 63.6
Pishchulin et al. [40] 88.8 77.3 67.1 53.7 36.1 73.7 63.1
Pishchulin et al. [39] 92.2 74.6 63.7 54.9 39.8 70.7 62.9

[39]+[40] 90.7 80.0 70.0 59.3 37.1 77.6 66.1
Johnson&

Everingham [21] 87.6 74.7 67.1 67.3 45.8 76.8 67.4
Ours 89.3 78.0 72.0 67.8 47.8 89.3 71.0

UIUC People
Andriluka et al. [1] 88.3 64.0 50.6 42.3 21.3 81.8 52.6

Yang&Ramanan [54] 78.1 60.9 53.2 41.3 32.2 76.1 53.0
Yang&Ramanan [55] 81.8 65.0 55.1 46.8 37.7 79.8 57.0
Pishchulin et al. [39] 91.5 66.8 54.7 38.3 23.9 85.0 54.4

Wang et al. [53] 86.8 56.3 50.2 30.8 20.3 68.8 47.0
Ours 89.1 72.9 62.4 56.3 47.6 89.1 65.6

Table 2. Results (PCP) on investigating model depth.
Method Torso U.leg L.leg U.arm L.arm Head Total

LSP
[55] 82.9 70.3 67.0 56 39.8 79.3 62.8
Kernel SVM 81.9 72.2 67.6 58.8 42.8 77.5 64.2
1 hidden layer 84.9 73.9 69.5 57.5 42.9 50.7 62.3
2 hidden layers 85.0 74.6 70.7 61.2 45.2 82.2 67.1
Ours 85.8 76.5 72.2 63.3 46.6 83.1 68.6

PARSE
[55] 82.9 68.8 60.5 63.4 42.4 82.4 63.6
Kernel SVM 81.0 67.8 61.2 63.2 44.1 78.0 63.2
1 hidden layer 84.4 71.2 63.2 62.4 44.4 70.2 63.7
2 hidden layers 85.9 74.4 68.3 64.6 46.3 85.4 67.9
Ours 89.3 78.0 72.0 67.8 47.8 89.3 71.0

UIUC
[55] 81.8 65.0 55.1 46.8 37.7 79.8 57.0
Kernel SVM 82.2 65.0 54.9 50.2 43.1 80.6 58.9
1 hidden layer 83.0 65.6 55.9 50.6 42.3 79.8 59.2
2 hidden layers 84.2 68.4 59.3 53.0 45.3 83.4 62.0
Ours 89.1 72.9 62.3 56.3 47.6 89.1 65.6

proved that linear-SVM and kernel-SVM are shallow mod-
els. With the deep model, our approach performs better. As
the number of hidden layers increases from 1 hidden layer
to 2 hidden layers, the estimation accuracy increases from
62.3% to 67.1%. With PCP 68.6%, our final model in Fig.
3(b) uses three hidden layers and is better than SVM and
deep models with fewer layers.

Table 3. Results (PCP) on investigating deep model structures.
Method Torso U.leg L.leg U.arm L.arm Head Total

LSP
DBN in Fig. 3(a) 82.9 73.2 69.5 59.8 43.8 79.2 65.5
Ours 85.8 76.5 72.2 63.3 46.6 83.1 68.6

PARSE
DBN in Fig. 3(a) 82.0 70.0 64.6 62.9 46.3 80.5 65.0
Ours 89.3 78.0 72.0 67.8 47.8 89.3 71.0

UIUC
DBN in Fig. 3(a) 87.4 68.4 58.3 52.2 44.3 84.6 61.8
Ours 89.1 72.9 62.3 56.3 47.6 89.1 65.6

Deep model structure design is investigated in Table 3.
The DBN in Fig. 3(a) trains a three-layer deep model over
the concatenated informations with three hidden layers. The
model in 3(b) learns high-order representations individu-
ally. The model in 3(b) with PCP 68.6% is better in con-
structing the high-order representations and therefore has
higher estimation accuracy compared with the DBN in Fig.
3(a) with PCP 65.5%.

Classification label and location learning is investigated
in Table 4. There are two sets of labels to be estimated
in our deep model: classification label ycls and part posi-
tions ypst. In the experiments, we evaluate different ways
of estimating these labels. The Only ycls in Table 4, with
PCP 63.7%, only estimates class label, with part location
directly obtained by the approach in [55]. The Only ypst,
with PCP 64.1%, only refines the part location, with class
label directly obtained by the approach in [55]. Separate
ycls+ypst, with PCP 64.7%, uses two deep models for esti-
mating ycls and ypst separately. It can be seen that both ycls

and ypst are helpful for improving accuracy. Our model
uses the single deep model to jointly learn both ycls and
ypst (PCP 68.6%) and performs better than using two mod-
els to learn them separately (PCP 64.7%) because body lo-
cation and the correctness of candidate body location are
dependent.

Analysis. Our model extracts high-order representations
of appearance, deformation and mixture types and better
models their dependence at the top layer. For example, if
the mixture types are upright upper- and lower-arms, the
weighted combination of the locations of wrist and shoul-
der is a good estimation on the location of elbow. If the
mixture types change, such estimation should change cor-
respondingly. Such complex dependence cannot be mod-
eled linearly and deep model is a better solution. When
different information sources are extracted separately with
the first several layers, the connections across sources are
removed and the number of parameters is reduced. It helps
to regularize optimization when training samples are lim-
ited. Existing methods only use ycls for supervision, while
we use both ypts and ycls. As shown in Fig. 4, refining
ypts does help to rectify incorrect part locations based on
the high order prior model of body pose. Jointly learning



Table 4. PCP results on classification label and location learning.
Method Torso U.leg L.leg U.arm L.arm Head Total

LSP
[55] 82.9 70.3 67.0 56.0 39.8 79.3 62.8
Only ycls 82.0 71.5 68.0 57.6 42.0 77.2 63.7
Only ypst 80.4 72.0 68.0 59.2 42.8 76.8 64.1
Separate
ycls+ypst 81.1 72.8 69.0 59.5 43.0 77.7 64.7
Ours 85.8 76.5 72.2 63.3 46.6 83.1 68.6

PARSE
[55] 82.9 68.8 60.5 63.4 42.4 82.4 63.6
Only ycls 81.0 69.8 66.1 60.5 43.9 76.1 63.8
Only ypst 80.5 71.2 65.4 62.2 44.4 79.5 64.6
Separate
ycls+ypst 83.4 73.7 67.6 64.4 47.1 82.0 67.1
Ours 89.3 78.0 72.0 67.8 47.8 89.3 71.0

UIUC
[55] 81.8 65.0 55.1 46.8 37.7 79.8 57.0
Only ycls 85.4 68.8 59.3 49.2 40.5 83.4 60.4
Only ypst 82.6 66.6 58.3 52.2 44.7 81.8 60.8
Separate
ycls+ypst 87.9 69.6 60.3 53.0 44.3 85.4 62.8
Ours 89.1 72.9 62.3 56.3 47.6 89.1 65.6

ypst and ycls helps to find their shared representation under
a multi-task learning framework, for which deep model is
an ideal choice.

6. Conclusion
This paper has proposed a multi-source deep model for

pose estimation. It non-linearly integrates three information
sources: appearance score, deformation and appearance
mixture type. These information sources are used for de-
scribing different aspects of the single modality data, which
is the image data in our pose estimation approach. Exten-
sive experimental comparisons on three public benchmark
datasets show that the proposed model obviously improves
the pose estimation accuracy and outperforms the state of
the art. Since this model is a post-processing of informa-
tion sources, it is very flexible in terms of integrating with
existing approaches that use different information sources,
features, or articulation models. Learning deep model from
pixels for pose estimation and analyzing the influence of
training data number will be the future work.
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