PROCEEDINGS OF ICIP’97 SANTA BARBARA, VOL. I, PP. 663-666

QUANTITATIVE L? ERROR ANALYSIS FOR INTERPOLATION

METHODS AND WAVELET EXPANSIONS

Thierry Blu

France Télécom—CNET DSE/SGV
38-40 rue du Général Leclerc
92794 Issy Moulineaux Cedex 9, France

e-mail:blu@issy.cnet.fr

Abstract— Our goal in this paper is to set a theoretical
basis for the comparison of re-sampling and interpolation
methods. We consider the general problem of the approx-
imation of an arbitrary continuously-defined function f(z)
—not necessarily bandlimited— when we vary the sampling
step 7. We present an accurate L2 computation of the in-
duced approximation error as a function of T for a general
class of linear approximation operators including interpola-
tion and other kinds of projectors. This new quantitative
result provides exact expressions for the asymptotic devel-
opment of the error as T — 0, and also sharp (asymptotically
exact) upper bounds.

I. INTRODUCTION

Re-sampling and interpolation play a central role in im-
age processing. These operations are required to rescale,
rotate images or to correct for spatial distortions. Shan-
non’s theory [1] provides an exact sampling/interpolation
system for bandlimited signals. However, this method is
rarely used in practice because of the slow decay of sinc(z).
Instead, practitioneers rely on more localized methods such
as bilinear interpolation, short kernel convolution and poly-
nomial spline interpolation, which are much more efficient
to implement, especially in higher dimensions. These meth-
ods can all be studied from the general perspective of ap-
proximation theory [2], [3], [4], [5], [6]. Here, we are aim-
ing for results that are more quantitative and directly ap-
plicable to the comparison of practical interpolation and
approximation methods. We will consider N-dimensional
signals that belong to the space L?(RY). We will use the
associated L?(RY) norm to characterize the behavior of
the error as a function of the sampling step 7. Our com-
putation is based on theoretical results in [7]; the case
of refinable functions (wavelets) is treated in more details
in [8]. These formulae may be used to identify the interpola-
tion/approximation methods that give the smallest approx-
imation error for a given computational complexity and/or
class of signals. The results should also be useful for com-
paring the performance of wavelet transforms.

We define the N-Dimensional Fourier transform f(w) of

a function f by the integral [ f(E)e_i‘”tngf.
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II. APPROXIMATION OF FUNCTIONS BY WAVELETS

Classically, approximation techniques are linear opera-
tors: this means that the image of the approximation op-
erator 1s a vector space. We assume that this space is
wavelet-like, i.e., that there exists a generating function
¢(z) in L%RY) and a sampling step (or scale parame-
ter [5]) 7' > 0 such that the approximation function belongs
to Vr = span{y(5 — n)},ez~v. The generating function is
further assumed to satisfy the Riesz conditions for reasons
which are discussed in [7], i.e. there exist two positive con-
stants B > A > 0 such that for all ¢ € £2(Z")

Allellezawy < |13 ene(- = 1) pamny < Bllellezay (1)

The more general case, where the approximating function
belongs to a multi-wavelet (or finite elements) space is dealt

with in [7].

A. Sampling and interpolation

The approximating operator Qr makes use of a sam-
pling operator Sy which maps the functions f of L2(RY)
to £2(ZN) sequences: its form is

seir—{ [rreee-ma'e} 2
nezLnN
where ¢ is a distribution and T the sampling step (the
sampling frequency is obviously F' = T~!). Thus, the ap-
proximation operator becomes

Qr : f =) {1 flnp( — ) (3)

As it is defined, Sy f is not ensured to be in ¢2(ZY). We
therefore make the additional assumption that ||w||"¢(w) is
square integrable for some r > % (the Sobolev regularity
exponent of f) and that ¢ is a distribution whose Fourier
transform is bounded (such as the Dirac mass), which en-
sures that the samples are in ¢2(Z%) (cf. [7] for the 1-D
case; the proof in N-D is similar). Alltogether, the condi-
tions on ¢, @ and f ensure that Qr f belongs to LZ(RY).
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III. AN APPROXIMATION THEOREM

We shall use the L? norm to evaluate the approxima-
tion error, and define er(f) = ||f — Q7 fl|lL2g~). One
of the fundamental results of [7] (1-D case) is that this
error can be computed exactly for bandlimited functions:
this extends (for multi-wavelets, and for arbitrary sampling
distributions) an already known result for the minimal ap-
proximation arror [9]. Our results are even more accurate,
providing sharp bounds in the case of arbitrary L2(RY)
functions f (with a slight Sobolev constraint).

Theorem 1: With the abovementioned hypotheses for ¢,
@ and f we have

1

r() = { o [IH@PE@R A} el

where e(f,T) vanishes if f is not aliased when sampled at
F = % Else, we have

(£, T) < KT7||[[]" (@) | 1 g vy

where 7 is the Sobolev regularity exponent of f and K a
constant which does not depend on f.
In this theorem, the positive error kernel E(w) is

E(w) =1 - 2R{g(w)p(w)} + $w) " Aw).  (5)

where A(w) = 3" .~ [B(w + 2n7)|?. Note that E(w) can
be also written as the sum of two terms

Bl) = 1- PO b - 2L g

Ey(w)

where it clearly appears that Eqg(w) corresponds to the min-
imal approximation error (as studied in [9]), when & is cho-
sen to be the dual function of ¢. In that case, Q7 reduces to
an orthogonal projector Pr. In the practical cases where ¢
has to be a sum of equally distributed Dirac masses §(z—n)
(quasi-interpolation), the coefficients can be determined by
minimizing the contribution of F;(w) in (4).

Considering asymptotic expansions, (4) provides an ex-
act development up to the regularity order of the function
to approximate: this is a consequence of e(f,7T) x T7;
which 1s more, theorem 1 tells us how to find a sampling
distribution ¢ such that the approximation error exhibit
asymptotically the same development, up to a given order,
as the minimal approximation error.

A. Averaging the L? error

In general, we want to be able to approximate not only
f(.), but also any shifted version f,(.) = f(.—u). Since this

may produce different values of the approximation error, we

2

may be interested in a more “global” measure obtained by
averaging the error over all the possible values of the shift
parameter u. Since er(f,) is I-periodic in any canonical
direction of RN we define this average by

o def |

nr(f)” = T—N/[OT]NET(fu)dNu, (7)

A remarkable result is that ny(f) can be computed exactly:
it reduces to the first term of (4).

Theorem 2: Under the same conditions on ¢, ¢ and f as
theorem 1, we have

1 P .
) = G [ f@PET a9
This interpretation of the first term of (4) shows that the
second is the variability that can be expected when consid-
ering shifted versions of one same function; moreover, the
correction term to er(f)? cancels on the average.

IV. REFINABLE WAVELETS

From now on, we shall restrict ourselves to 1-D functions,
and even more, to refinable generating functions (wavelets),
which have gained such a wide success in Signal Process-
ing. We thus require that the approximating function ¢(z)
satisfies a two-scale difference equation [10], [11]

p(z) = gnp(2x —n) (9)

In this case, the space Vr generates a multiresolution anal-
ysis [12], [13].

In fact, since the approximation kernel can be separated
into two parts Fy and Fq, we shall only concentrate on Ej
assuming that the sampling distribution has been chosen
so as to minimize the approximation error (i.e. F1(w) = 0).

The filter G(z) = >, gnz™" in (9) is supposed here to
be FIR and to generate a regular function, which satisfies

the Riesz condition (1). In particular, we assume that (1+
z~1)E divides G(z) and define the quotient to be 27 LQ(z).

A. Asymptotic development

For f regular enough, we can find [7], [8] the asymptotic
development of er(f)? as T'— oo by knowing the develop-
ment of F(w) near 0. In particular, if we concentrate on the
first 4L coefficients (needing f(*L) € L?), the development
can easily be computed from the generating filter G(z).

Before giving the expression of the development, we re-
call that the 27-periodic function A(w) = Y |@¢(w+2n)|?
can be computed exactly through the resolution of a linear
system of equations [14], [8] due to the existence of the re-
finement equation (9): this technique will not be detailed
here. Tt will thus be possible to find the exact coefficients
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of the development of R(w) defined by
Alw + .

( + ) |G(_Ezw)

4A(2w)
in the neighborhood of w = 0; we denote them by ag, 1.e.
R(w) = Y 5o axw”. In fact, the first 2L coefficients cancel
due to the divisibility condition on (G(z); note also that the
odd coefficients cancel as well. The error er(f)? satisfies
the following development

R(w) =

(10)

2L-2

_ Ok 1 ¢R)
> gl
k=L
up to the order 4L — 1 in the neighbourhood of T'= 0. In
particular, we can provide a closed expression for the infi-

nite summation [5] yielding the first non Vanishing coeffi-

[QE=DIyA(r) . Note, however,
2L+1\/4L 1

that (11) provides much more, since it gives access to the
next asymptotic orders as well.

er(f)? = 3.7 (11)

cient C; specifically C; =

A.1 B-Splines

In the case of B-splines, generated by G(z) = 27 L+ (1 +
z71)L | the expression of C is already known [5], but not
the next asymptotic equivalents. A direct computation [8]
shows that

20—
Z EX (oo )i
where ((s) is Riemann’s zeta function >, ., n~*, which

can here (s is even) be computed exactly with the help of
Bernoulli numbers.

A .2 Daubechies wavelets

Daubechies wavelets [15] are generated by the shortest
orthonormal filter G(z) which has L “regularity” factors
1+ z~1. In particular we have A(w) = 1 which simplifies
R(w). Here we rely on the development of sin?/~'(z) in
power series, whose coefficients we denote by dr,

EdL kéL‘

E>0

2L1

Additionally we define the constant Cj = 4_L+1L(2LL).
Then the first 4L coefficients of the asymptotic develop-
ment are given by

2L-2

Crdrk
2 : (k)||2, T2k .
k=L
. . 1/2
The first non-vanishing order is € = {m} and

can be compared to the B-spline ﬁrst equivalent: an asymp-
totic study as L — oo shows that, in order for the

3

Daubechies wavelets to achieve the same approximation
error as the B-splines, it i1s necessary that the sampling
step be m times smaller, which of course increases by the
same amount the sampled data. This demonstrates the
superiority of B-splines over Daubechies’ wavelets for the
approximation of smooth functions.

B. Upper bound

Theorem 1 provides a powerful tool for deriving a whole
variety of bounds for ep(f)[7]. Due to its asymptotic prop-
erties, we can go even further and exhibit a new sequence
of bounds that are asymptotically optimal up to a given
order, as shown in [8]. We shall not give all the sequences,
but only some of them.

Recalling the definition (10) of R(w), one of our results
for ep(f) is

-2LR 2L
er(f) < sup \/ o) O g

which gives an explicit value to the constant C, that ap-
pears in the Strang-Fix error estimate [2].

le=T",  (14)

B.1 Splines

In the case of splines, a more direct computation provides

2 (2L) — 172
ﬂ-L

er(f) [FARI RN

IN

(15)

We can also be more accurate by adding another term to
the right hand side. With the following bound, our result
is asymptotically sharp

2C(2L
er(r) < Y e 4 RENpES S
—

»

(16)
This is because the first term on the right hand side is
exactly the B-spline asymptotic first order equivalent C .

B.2 Daubechies wavelets

Using (14), it can be checked that a first order upper
bound can be written as

_\2 . C(2L
er(p) <\ J(02) + Lot
where O = {m}m is here the first order asymp-

totic equivalent for Daubechies wavelets. In general, and
in particular as L increases, the (C")2 term is larger than
the second one, so that this first order bound is close to

the asymptotic equivalent: this is thus a sharp bound.
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V. CONCLUSION

The consistency of our results can be checked in figures 1

and 2: 1in both log-log plots, the exact approximation er-
10°F upper bound by eq. (15) o -
-.-.-. upper bound by eq. (16)
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2
]
=1
g
g
ERI 1
o
&
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equivalent by eq. (12)
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Fig. 1. Results of the paper for the minimal approximation of a

gaussian f(z) = e—* P using a B-spline of order 4 (i.e. L = 4)
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Sampling step T
Fig. 2. Results of the paper for the minimal approximation of a

gaussian f(z) = =P using a Daubechies wavelet of order 4

ror e7(f) and the first member of the rhs of (4) coincide
as soon as T' 5 1; above this value, e7(f) oscillates in the
expected way, that is to say, on the (squared) average it is
identical to the first member of (4) (cf theorem 2). We also
check the sharpness of our new upper bounds: in partic-

4

ular, we note how close the Daubechies upper bound (17)
is to the first order asymptotic equivalent, and how close
these two (easily computable) estimates are to the eract
approximation error when 7' 5 0.5.

We expect that the general theory described here, and
more generally in [7] may be helpful for the design of
optimal interpolation methods under various constraints
(restrictions on the size of the support, on the sampling
scheme etc...). This has numerous applications in digital
signal processing, as well as in the discretization of contin-
uous systems.
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