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ABSTRACT

We describe a new family of scaling functions, the (α, τ)-
fractional splines, which generate valid multiresolution anal-
yses. These functions are characterized by two real param-
eters: α, which controls the width of the scaling functions;
and τ , which specifies their position with respect to the grid
(shift parameter). This new family is complete in the sense
that it is closed under convolutions and correlations.

We give the explicit time and Fourier domain expres-
sions of these fractional splines.

We prove that the family is closed under generalized
fractional differentiations, and, in particular, under the Hil-
bert transformation. We also show that the associated wave-
lets are able to whiten 1/fλ-type noise, by an adequate tun-
ing of the spline parameters.

A fast (and exact) FFT-based implementation of the frac-
tional spline wavelet transform is already available. We
show that fractional integration operators can be expressed
as the composition of an analysis and a synthesis iterated
filterbank.

1. INTRODUCTION

The first instances of fractional splines have been introduced
by the authors in [1]. We worked out a fast FFT-based im-
plementation of the fractional spline wavelet transform [2]
and put the software on our web server. These functions
were extensions of the traditional B-splines to noninteger
exponents and were depending on one parameter only—the
degree α.

However, this family was not complete under convolu-
tions and correlations—an essential property for consider-
ing nonorthogonal projections, or fractional differentiation.
This is why we were motivated to generalize the fractional
splines by introducing a new parameter, τ , that we interpret
as a shift of the basis function, while the degree controls
their essential support.

In this paper, we describe this new family of scaling
functions and their associated wavelets. Basically, the scal-

ing functions have a Gaussian-like shape, the size and loca-
tion of which are given by the first and the second parameter,
α and τ , respectively. This extension makes the new family
complete; i.e., stable under convolutions and correlations.

We give the explicit time and Fourier domain expres-
sions of these fractional splines. Although these functions
do not have compact support, they still decay fast enough
for us to consider that they have an effective bounded sup-
port.

We show that the generalized fractional derivative of a
fractional spline is still a fractional spline with different pa-
rameters. In particular, the Hilbert transform of an (α, τ)-
fractional spline is an (α, τ + 1/2)-fractional spline.

We also indicate that the associated wavelets behave like
fractional derivatives of orderα+1. This implies that a frac-
tional spline wavelet transform has the property of whiten-
ing 1/f

α+1
2 -type noise. In practice, this means that by ade-

quate tuning of the degree parameter, it is possible to decor-
relate these types of frequently encountered noises. Another
potential application of fractional splines is the generation
of fractional Brownian motion, or 1/f λ-type noise. As has
been shown by Flandrin et al. [3], the inverse wavelet trans-
form can be used to generate pseudo-fBm by a suitable scal-
ing of the input coefficients. In fact, a true fBm can be gen-
erated from the fractional integration of white noise, which
makes the fractional spline transform a perfect tool for ana-
lyzing or synthetizing such signals [4].

2. DEFINITION

The generalized fractional B-splines are defined by the Fou-
rier expression

β̂ατ (ω) =
(
ejω − 1
jω

)α+1
2 −τ (1− e−jω

jω

)α+1
2 +τ

(1)

where α > −1 and τ are some real parameters. We call α
the “degree” of the spline and τ its “shift” for reasons that
will become clear later. Also note that |β̂ατ | = β̂α0 ; i.e., τ
has an influence on the phase of the Fourier transform only.
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When α is a positive integer and τ = (α + 1)/2, expres-
sion (1) is the well-known Fourier transform of the non-
centered standard B-splines [5, 6]. When α > −1 is an real
number and τ = (α + 1)/2, (1) becomes the fractional ex-
tension to the integer B-splines that we have proposed in [1].
A fractional spline is thus a function that can be expressed
as a sum of shifted versions of a fractional B(asic)-spline.

In the following, we shall use the standard extension of
the factorial, α! = Γ(α + 1) using Euler’s Gamma func-
tion which is defined by Γ(p) =

∫∞
0 tp−1e−t dt for p >

0, and by analytic continuation otherwise. The general-
ized binomial coefficients are still obtained by the expres-
sion

(
p
q

)
= p!

(p−q)!q! and they satisfy the reflection formula(
p
q

)
=
(
p
p−q
)
. For symmetry reasons, we thus also define

the centered binomial coefficients by
∣∣p
q

∣∣ =
(

p
q+p/2

)
. This

ensures
∣∣p
q

∣∣ =
∣∣ p
−q
∣∣.

Proposition 1 The time-domain formulæ for the general-
ized fractional B-splineβατ is

βατ (t) =
∑
k

(−1)k
∣∣∣∣α+ 1
k − τ

∣∣∣∣ ρατ (t− k) (2)

where the functionρατ is given by

ρατ (t) =



Cατ |t|α +Dα

τ |t|α log |t| if α is odd
Cατ |t|α log |t|+Dα

τ |t|α sign t if α is even
Cατ |t|α +Dα

τ |t|α sign t otherwise.
(3)

The constants Cατ and Dα
τ are shown in Table 1. It is now

easier to understand why α is the degree of the fractional
B-spline.

Table 1. Expression of the constants in Proposition 1.

general case special cases

Cατ − cosπτ
2α! sin π

2 α
(−1)

α
2 +1 cosπτ
π α! for even α

Dα
τ − sinπτ

2α! cos π2 α
(−1)

α+1
2 sinπτ
π α! for odd α

Using the same technique as in [1], we can prove that
βατ (t) ∝ |t|−α−2 when |t| → ∞. This ensures that these
functions are localized in time. Also note that for negative
values of α, βατ (t) assumes infinite values at the integers.
These singularities, though, are still integrable.

The fractional B-splines of degree 1 are shown in Fig. 1
for several values of the shift parameter; according to Propo-
sition 1, these functions are linear combinations of shifts of
|t| and |t| log |t|. One can already notice that the main effect
of τ is to shift the basis function without modifying its shape
significantly. Moreover, as α increases, the shape will tend

to get more and more preserved, as exemplified in Fig. 2. In
fact, similar to [10], we can show that

βατ (t) ≈
α→∞

√
6

π(α+1) e
− 6
α+1 (t−τ)2

,

which emphasizes the “shift” and “support” interpretations
of the parameters τ and α.

3. PROPERTIES

A key property is that the fractional B-splines satisfy a two-
scale difference equation. This is easily seen on the Fourier
transform (1) of the B-spline. The z-transform of the result-
ing scaling filter is

Hα
τ (z) = 2−α(1 + z)

α+1
2 −τ (1 + z−1)

α+1
2 +τ . (4)

By computing its (binomial) impulse response, we derive
the two-scale relation

βατ (t) = 2−α
∑
k

∣∣∣∣α+ 1
k − τ

∣∣∣∣ βατ (2t− k). (5)

It is interesting to remark that, although a shifted scaling
function does not usually preserve its scaling property, a
shifted fractional B-spline βατ (t− t0) is still very close to a
true scaling function, namely βατ+t0(t).

As is apparent from (4), the scaling filter has a zero of
multiplicity at least �α + 1� at z = −1. However, in con-
trast with the classical theory [7], the fractional B-splines
not only do reconstruct the polynomials of degree �α�, but
also those of degree 	α
. Obviously, this unexpected bonus
when α is not integer is made possible by the infinite sup-
port of the filter—we are in a situation where the theorems
of the classical theory do not apply. The fractional B-splines
also satisfy the usual stability requirement known as Riesz-
basis condition [7]. As a result of the scaling relation (5),
the partition of unity and of this stability, we can build a
multiresolution analysis in the sense of Mallat [8].

Let us now consider derivatives. In the Fourier domain,
N th order differentiation amounts to multiplying by (jω)N .
Making N non-integer provides a Fourier equivalent of Li-
ouville’s definition [9] of fractional derivative. We propose
here to generalize even further and define

∂ατ f(t) =
∫ ∞
−∞

(−jω)
α
2−τ (jω)

α
2 +τ f̂(ω)

dω
2π

. (6)

When τ = α
2 , we recover Liouville’s fractional derivative.

More exciting is the fact that the Hilbert transformH (which
has −j signω for frequency response) can be expressed as
a fractional derivative as well. Specifically, we have

H f = −∂0
1/2
f. (7)
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Proposition 2 The fractional derivative of order(α′, τ ′) of
an(α, τ)-fractional spline is another(α−α′, τ−τ ′)-fractional
spline:

∂α
′

τ ′ β
α
τ (t) =

∑
k

(−1)k
∣∣∣∣ α′

k − τ ′

∣∣∣∣βα−α′τ−τ ′ (t− k). (8)

In particular, making use of(7), we have

H βατ (t) =
∑
k

1
π(k − 1

2 )
βατ−1/2(t− k). (9)

This property will be used later when we show how to solve
a fractional differential equation using a discrete wavelet
transform. Notice that the coefficients used in (8) are the
impulse response of the filter 2α

′−1Hα′−1
τ ′ (−z).

4. WAVELETS AND DWT

Multiresolution analysis involves wavelet spaces that are
usually chosen orthogonal to the multiresolution spaces. De-
noting by

Aα(ejω) =
∑
k

|β̂ατ (ω + 2kπ)|2

the discrete Fourier transform of the autocorrelation sequence
of an (α, τ)-fractional B-spline, the Fourier transform of the
semi-orthogonal fractional spline wavelet is given by

ψ̂ατ (ω) =
Gατ (ej

ω
2 )

2
β̂ατ

(ω
2

)

where Gατ (ejω) = −e−jωHα
τ (−e−jω)Aα(−ejω).

(10)

This extends the construction given in [10]. Equation (10)
is the Fourier transform of the standard wavelet equation,
where G(z) is the wavelet filter. It can moreover be veri-
fied that ψατ and its integer shifts are orthogonal to {βατ (t−
k)}k∈Z.

Now that we have the scaling filterHα
τ (z) and the wavelet

filterGατ (z), we can build an iterated dyadic filterbank which
computes the discrete wavelet coefficients

〈
f, (ψατ )i,k

〉
, where

(ψατ )i,k(t) is short fo 2−i/2ψατ (2−it − k). The synthesis
filters can easily be obtained using standard inversion for-
mulæ [7] and are denoted H̊α

τ (z) and G̊ατ (z). The fractional
B-splines and the semi-orthogonal wavelets can also be or-
thonormalized, yielding an orthonormal set of filters, a case
that is not discussed any further here.

In all cases, we have direct formulæ for the frequency
response of these filters which is all we need to implement
the wavelet transform exactlyunder periodic boundary con-
ditions [2].

An interesting property is that these wavelets behave
like fractional differentiation operators.

Proposition 3 For a predominantly lowpass functionf , the
wavelet transform coefficient

〈
f, (ψατ )i,k

〉
≈ −2i(α+3/2)A

α(π)
4α+1

∂α+1
τ f(k2i)

behaves like a generalized fractional derivative of orderα+
1 and shiftτ , evaluated at the pointk2i.

The interpretation of this result is that |ω|−α+1
2 -type noises

are whitened by the DWT. The α-knob of the fractional
spline wavelet transform might thus be an interesting tun-
ing parameter for decorrelating these types of self-similar
signals.

As an example, we show here that our fractional spline
wavelet transform can also be used to deconvolve the equa-
tion ∂α

′

τ ′ f = g. If fi,k are the unknown coefficients of the
(α, τ)- fractional spline wavelet decomposition of f(t), we
should have

g(t) =
∑
i,k

fi,k2−iα
′
∂α
′

τ ′ ψ
α
τ (2−it− k).

This shows that the coefficients fi,k are given by the wavelet
decomposition of g(t) with the wavelet ∂α

′

τ ′ ψ
α
τ . By Propo-

sition 2, we know that ∂α
′

τ ′ ψ
α
τ is a fractional spline of degree

α−α′ and shift τ − τ ′. The wavelet coefficients of g(t) are
thus obtained by iterating the analysis iterated filterbank that
matches the synthesis filterbank that hasH(z) = Hα−α′

τ−τ ′ (z)
as scaling filter, and G(z) = 22α′−1Hα′−1

τ ′ (−z)Gατ (z) as
wavelet filter. The corresponding analysis filters follow us-
ing standard inversion relations and we get

• low-pass filter: H̃(z) = Hα+α′

τ ′−τ (z)
Aα(z)
Aα(z2)

;

• high-pass filter: G̃(z) = −
2−2α′+1zHα−α′

τ−τ ′ (−z)
Aα(z2)

.

The implementation of this method is shown in Fig. 3; it
is then possible to use all kinds of regularizations in the
wavelet subbands. Using the same method, we can also
generate a fractional Brownian motion. This is because a
fBm is a random process that can be seen as the solution B
of the differential equation ∂h+1/2

0 B = ε where ε is a white
Gaussian noise [4].

5. CONCLUSION

We have presented a new complete set of scaling functions
that depend on two parameters that can be tuned indepen-
dently. What characterizes the associated multiresolutions
are their versatility and flexibility. Adjusting the free param-
eters gives a way to optimize the basis functions for many
problems that are currently solved by means of wavelets
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such as source compression, denoising and deconvolution.
Online Java demos of the (α, τ)-fractional wavelet trans-
form are available on our website:

bigwww.epfl.ch/demo/jfractsplinewavelet/
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Fig. 1. Plot of the “linear” B-splines β1
τ , for different values

of τ ∈ [0, 4]. Note that the functions with integer τ (τ =
0, 1, 2, 3 and 4) are the usual linear spline; i.e., the triangle
function.
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Fig. 2. Plots of βατ (t + τ), for three different values of α;
on each plot, τ varies in [0, 1]. This shows that βατ (t) gets
closer to βα0 (t− τ) as α increases, which justifies the inter-
pretation of τ as a shift parameter.

g(t) f(t)
×2α

′
= f1,k

×22α′ = f2,k

×2iα
′

= fi,k

G̃ ↓

H̃ ↓
G̃ ↓

H̃ ↓
G̃ ↓

H̃ ↓ . . . . . .

↑ Gατ

↑ Hα
τ

↑ Gατ

↑ Hα
τ

↑ Gατ

↑ Hα
τ

Fig. 3. Resolution of the differential equation ∂ α
′

τ ′ f = g
using a dyadic analysis-synthesis filterbank. See the text for
the exact values of H̃ and G̃.
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