

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Xiaogang Wang

1

Department of Electronic Engineering, Chinese University of Hong Kong

ImageNet Image Classification Challenge 2012

Top5 Image Classification Error on ImageNet

ImageNet Object Detection Task (2013)

- ▶ 200 object classes
- ▶ 40,000 test images

4

Mean Average Precision (mAP)

5 Networks for Object Detection," CVPR 2015

PASCAL VOC (SIFT, HOG, DPM...)

PSCAL VOC (CNN features)

▶ 7

PSCAL VOL (CNN features)

8

Pedestrian Detection

Improve state‐of‐the‐art average miss detection rate on the largest Caltech dataset from 63% to 17%

Pedestrian Detection on Caltech (average miss detection rates)

W. Ouyang and X. Wang, "Joint Deep Learning for Pedestrian Detection," ICCV 2013.

Y. Tian, P. Luo, X. Wang, and X. Tang, "Pedestrian Detection aided by Deep Learning Semantic Tasks," CVPR 2015.

Outline

Joint deep learning: pedestrian detection

- \blacktriangleright DeepID-Net: general object detection on ImageNet
- Conclusions

Is deep model a black box?

 \blacktriangleright 12

Joint Learning vs Separate Learning

End-to-end learning

Deep learning is a framework/language but not a black-box model

Its power comes from joint optimization and

increasing the capacity of the learner

13

ConvNet−U−MS

– Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, "Pedestrian Detection with Unsupervised Multi-Stage Feature Learning," CVPR 2013.

Results on Caltech Test

Results on ETHZ

- • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. CVPR, 2005. (6000 citations)
- \bullet P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained, Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)
- 16 • \cdots W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection \cdot with Occlusion Handling. CVPR, 2012.

Our Joint Deep Learning Model

W. Quyang and X. Wang, "Joint Deep Learning for Pedestrian Detection," Proc. ICCV, 2013.

Modeling Part Detectors

Design the filters in the second convolutional layer with variable sizes

Part models learned from HOG

Deformation Layer

Visibility Reasoning with Deep Belief Net

 \overline{a}

Pedestrian Detection aided by Deep Learning Semantic Tasks

Y. Tian, P. Luo, X. Wang, and X. Tang, "Pedestrian Detection aided by Deep Learning Semantic Tasks," CVPR 2015

Pedestrian Detection on Caltech (average miss detection rates)

W. Ouyang and X. Wang, "Joint Deep Learning for Pedestrian Detection," ICCV 2013.

Y. Tian, P. Luo, X. Wang, and X. Tang, "Pedestrian Detection aided by Deep Learning Semantic Tasks," CVPR 2015.

Outline

Joint deep learning: pedestrian detection

P DeepID-Net: general object detection on ImageNet

Conclusions

Challenges of Object Detection

- \blacktriangleright Huge number of classes
- **Appearance variation in different classes**

\blacktriangleright Intra-class variation

▶ Part existence

\blacktriangleright Intra-class variation

- ▶ Part existence
- Color

- \blacktriangleright Intra-class variation
	- ▶ Part existence
	- Color
	- \triangleright Occlusion

\blacktriangleright Intra-class variation

- ▶ Part existence
- Color
- \triangleright Occlusion
- ▶ Deformation

Object Detection on ImageNet

RCNN (**mean average precision: 31 4%**) **31.4%**

Consideration for deep learning based general object detection

- \triangleright Time
	- ▶ Test
	- \blacktriangleright Training
- ▶ Accuracy
	- **Learning discriminative and invariant features**
	- **Capture complex deformation and occlusion of parts**
	- \triangleright Rich contextual information

mAP 31 $\qquad \qquad \text{to 50.3}$

Our pipeline

 $\qquad \qquad$

Object detection – old framework

- **Slidin g window**
- ▶ Feature extraction
- ▶ Classification

For each window size For each window 1. Feature extraction 2. Classification End; • 33 2015/10/3 End;

Object detection – the framework

Sliding window

- \blacktriangleright Sliding window
- \blacktriangleright Feature extraction
- \blacktriangleright
- For each window size For each window1. Feature extraction 2. Classification End; 34 End;

Feature vector: $\vec{\mathbf{X}} = [x_1 \ x_2 \ x_3 \ x_4 \ ...]$

exaction

Object detection – the framework

- ▶ Sliding window **Feature extraction**
- **Classification**

Sliding window

Feature exaction

Problem of sliding windows

- Single-scale detection: 10k to 100k windows per image
- Multi-scale detection: 100k to 1m windows per image
- ▶ Multiple aspect ratio:10m to 100m windows per image
- ▶ Selective search: 2k windows per image of multiple scales and as pect ratios

Selective

search

 \blacktriangleright Initial segments from over-segmentation [Felzenszwalb2004] Image Bounding boxes

Selective search

- \blacktriangleright Initial segments from over-segmentation [Felzenszwalb2004] Image Bounding boxes
- **Based on hierarchical grouping**
- \blacktriangleright Group adjacent regions on region-level similarity
- **Consider all scales of the hierarchy**

Our investigation

- ▶ Speed-up the pipeline
- **Effectively learn the deep model**
- Make use of domain knowledge from computer vision
	- **Deformation pooling**
	- \blacktriangleright ▶ Context modelling

mAP 31 $\qquad \qquad$ to 50.57 on val2

Our approach

 \blacktriangleright

Bounding box rejection

Motivation

- Selective search: ~ 2400 bounding boxes per image
- **Feature extraction using AlexNet**
	- ▶ ILSVRC val: ~20,000 images, ~2.4 days
	- ILSVRC test: ~40,000 images, ~4.7days
- **Bounding box rejection by RCNN:**
	- For each box, RCNN has 200 scores $S_{1...200}$ for 200 classes
	- If max $(S_{1...200})$ < -1.1, reject. 6% remaining bounding boxes

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." *CVPR,* 2014

Bounding box rejection

- Speed up the pipeline
	- Save the feature extraction time by about 10 times.
- **Improve mean AP by 1%**

h.

Box rejection

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." *CVPR,* 2014

mAP 31 $\qquad \qquad$ to 50.57

Our pipeline

Deep learning is feature learning

Learning features and classifiers separately

How to effectively learn features?

- ▶ With challenging tasks
- **Predict high-dimensional vectors**

Directly training 200 binary classifiers with CNNs are not good

Why need pre-training with many classes?

- **Each sample carries much more information**
- ▶ One big negative class with many types of objects confuses CNN on feature learning
- **Make the training task challenging, not easy to overfit**

Feature learning

- **Petrain for image-classification with 1000 classes**
- Finetune for *object-detection* with 200+1 classes
	- **Transfer the representation learned from ILSVRC** Classification to PASCAL (or ImageNet) detection
- Use the fine -tuned features for learning SVM

Feature learning

- **Petrain for image-classification with 1000 classes**
- Finetune for *object-detection* with 200+1 classes
- Use the fine -tuned features for learning SVM
- **Existing approaches mainly investigate on network** structure
	- \blacktriangleright Number of layers/channels, filter size, dropout

Network structure

• 50

Network structure

51

Network structure

.

52 ь

Network structure

▶ Classification

- Pretrain for *image-classification* with 1000 classes
- \blacktriangleright Finetune for *object detection* with 200 classes
- Gap: classification vs. detection, 1000 vs. 200

Image classification **Object detection**

▶ Classification

- Pretrain for *image-classification* with 1000 classes
- \blacktriangleright Finetune for *object detection* with 200 classes
- \blacktriangleright Gap: classification vs. detection, 1000 vs. 200

Image classification Object detection

▶ Classification

56

- Classification (Cls)
	- Pretrain for *image-classification* with 1000 classes
	- Gap: classification vs. detection, 1000 vs. 200
- ▶ Detection (Loc)
	- Pretrain for *object-detection* with 1000 classes

Result and discussion

- RCNN (Cls+Det),
- ▶ Our investigation
	- ▶ Better pretraining on 1000 classes
	- \blacktriangleright Object-level annotation is more suitable for pretraining

mAP 31 $\qquad \qquad$ to 50.57 on val2

Our approach

59 \blacktriangleright

Feature learning – SVM -net

\blacktriangleright Existing approach

- Learn features using soft-max loss (Softmax-Net)
- **Train SVM with the learned features**

Feature learning – SVM -net

\blacktriangleright Existing approach

61

- Learn features using soft-max loss (Softmax-Net)
- **Train SVM with the learned features**
- ▶ Replace Soft-max loss by Hinge loss when fine-tuning (SVM-Net)
	- **Merge the two steps of RCNN into one**
	- ▶ Require no feature extraction from training data (~60 hours)

mAP 31 $\qquad \qquad$ to 50.3

Our pipeline

 \blacktriangleright

Deep model training def-pooling layer

▶ RCNN (ImageNet Cls+Det)

- **Pretrain on image-level annotation with 1000 classes**
- \blacktriangleright Finetune on object-level annotation with 200 classes
- Gap: classification vs. detection, 1000 vs. 200
- ▶ Our approach (ImageNet Loc+Det)
	- \blacktriangleright Pretrain on object-level annotation with 1000 classes
	- \blacktriangleright Finetune on object-level annotation with 200 classes with defpooling layers

Deformation

- **Learning deformation [a] is effective in computer vision** society.
- **Missing in deep model.**
- We propose a new deformation constrained pooling layer.

[a] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Trans. PAMI, 32:1627–1645, 2010.

Modeling Part Detectors

- Different parts have different sizes
- **Design the filters with variable sizes**

Part models learned from HOG

[b] Wanli Ouyang, Xiaogang Wang, "Joint Deep Learning for Pedestrian Detection ", ICCV 2013.

 \blacktriangleright 66

Deformation layer for repeated patterns

Deformation layer for repeated patterns

Pedestrian

General object detection

Assume no repeated pattern Repeated patterns

Only consider one object class Patterns shared across different object classes

Deformation constrained pooling layer

Can capture multiple patterns simultaneously

Our deep model with deformation layer

mAP 31 $\qquad \qquad$ to 50.57 on val2

Our approach

Context modeling

- ▶ Use the 1000 class Image classification score.
- $\blacktriangleright \sim 1\%$ mAP improvement.

Context modeling

Use the 1000-class Image classification score.

- ▶ ~1% mAP improvement.
- Volleyball: improve ap by 8.4% on val2. Volleyball

mAP 31 $\qquad \qquad$ to 50.57 on val2

Our approach

Model averaging

Models of different structures are complementary on different classes.

mAP 31 $\qquad \qquad$ to 50.57 on val2

Our approach

Comparison with state -of-the -art

Our approach pp

Component analysis

Summary

Speed-up the pipeline:

- ▶ Bounding rejection. Save feature extraction by about 10 times, slightly improve mAP $(-1%)$.
- \blacktriangleright Hinge loss. Save feature computation time (~60 h).

Improve the accuracy

- \blacktriangleright Pre-training with object-level annotation, more classes. 4.2% mAP
- \blacktriangleright Def-pooling layer. 2.5% mAP
- ▶ Context. 0.5-1% mAP
- \blacktriangleright Model averaging. Different model designs and training schemes lead to high diversity

Conclusions

- Jointly optimize vision components (joint deep learning)
- **Propose new layers based on domain knowledge (def**pooling layer)
- Carefully design the strategies of learning feature representations
	- **Feature learned aided by semantic tasks**
	- **Pre-training with challenging tasks and rich predictions**
	- \blacktriangleright The chosen training tasks help to achieved desired feature invariance and discriminative power
	- \blacktriangleright Adapted to specific tasks in test

Multimedia Laboratory

The Chinese University of Hong Kong

Wanli Ouyang Xiaogang Wang Xiaoou Tang Chen Change Loy Ping Luo

Hongsheng Li Xingyu Zeng Shi Qiu Yongkong Tian Zhenyao Zhu

Zhe Wang Shuo Yang Chen Qian Yuanjun Xiong Ruohui Wang

