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Weakly Supervised Part Proposal Segmentation
From Multiple Images
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Abstract— Weakly supervised local part segmentation is chal-
lenging, due to the difficulty of modeling multiple local parts
from image level prior. In this paper, we propose a new weakly
supervised local part proposal segmentation method based on
the observation that local parts will keep fixed along the object
pose variations. Hence, the local part can be segmented by
capturing object pose variations. Based on such observation,
a new local part proposal segmentation model is proposed.
Three aspects, such as shape similarity-based cosegmentation,
shape matching-based part detection and segmentation, and
graph matching-based part assignment are considered. A part
segmentation energy function is first proposed. Four terms,
such as MRF-based single image segmentation term, shape
feature-based foreground consistency term, NCuts-based part
segmentation term, and two-order graphs matching based part
consistency term, are contained. Then, a three sub-minimization-
based energy minimization method is proposed to accomplish
approximation solution. Finally, we verify our method based
on three image data sets (PASCAL VOC 2008 Part data set,
UCB Bird data set, and Cat-Dog data set), and one video data
set (UCF Sports) data set. The experimental results demonstrate
a better segmentation performance compared with the existing
object cosegmentation and part proposal generation methods.

Index Terms—Part segmentation,
matching, graph matching, NCuts.

cosegmentation, shape

I. INTRODUCTION

HE existing image segmentation methods paid much
attention on object segmentation that segments object
region from images [1]-[3], while the detailed local part
regions are ignored. Note that many computer vision tasks rely
on local information analysis where the part segmentation is
an essential step, such as the fined bird image classification
that uses the appearances of local parts to distinguish the bird
subspecies [4].
Recently, a few of researchers have paid attention on local
part segmentation [4]-[7], where the multiple local parts and
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Output: The Part Segmentation (By setting Four Parts)

Fig. 1. An explanation of part level segmentation using weak priors, which
is the input and output of the proposed method.

their structures instead of object are segmented. Compared
with object segmentation, it needs to handle multiple part pri-
ors and their spatial structures, and thus is a more difficult task.

The existing local part segmentation methods mainly focus
on supervised manner that learns each part prior from accurate
training data [5]-[7]. Successful part segmentation can be
achieved by the careful prior learning and segmentation model
design. However, pixel-level training data is generally not
available in many applications, while the rough priors such
as image tags often appear. An example is shown in Fig. 1,
where the image level tags can be easily provided by user.
In such case, the problem changes to segment multiple part
from images with tag priors, which is weakly supervised part
segmentation problem.

The challenge of weakly supervised part segmentation is
how to define semantic local part from weak priors. In other
words, the initial priors are so rough that it is difficult to
generate part priors. A feasible solution is local part proposal
generation, i.e., using a set of sufficient local part proposals to
provide local parts [4]. However, there still lacks a useful cue
to capture part regions. Fortunately, it is observed that local
parts will keep fixed among object variations. Hence, local
parts can be defined as the regions that keep fixed among the
variations. An example is shown in Fig. 1, where the “head”
region keeps fixed among “Cat” images, and is set as a local
part, while the region containing “head” and “body” varies
among the images, and is treated as local region instead. By the
definition, we can obtain part proposals by shape matching.

Based on such observation, we propose a weakly supervised
part proposal segmentation model. Given multiple images
related to an object, with the assumption that the object is
contained in each image, we aim at segmenting local part
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Fig. 2. The example of original region pairs and their correspondence matching. (a)(b): the original region pairs. (c): the matching results. (d): the corresponding
pixels on the boundary by [8]. It is seen that local parts keep fixed along the shape variation, such as the “head” that have same pixel shifts.

proposals from the images by measuring pose variations.
Our part proposal segmentation problem is formulated as a
L label assignment task. An energy function is designed to
measure the label assignment by four terms: the single image
segmentation term, the object region consistency term, the part
consistency term, and the global part structure consistency
term. The first two terms are to enforce the foreground to be
common objects. The third term is to constraint the consistency
of parts, which is formulated by capturing shape variations,
as shown in Fig. 2. The fourth term is to enforce the similarity
of part structure. Based on the energy, the part segmentation
is accomplished by the energy minimization, which is solved
by three sub-minimization problems, such as cosegmentation
problem by object proposals and shortest path searching, part
generation problem by shape context matching and NCuts, and
part label matching problem by two order graph matching.
We verify our method on both the image and video data
sets. The experimental results demonstrate that our method
obtains better IOU values than several state-of-the-art object
segmentation and part segmentation methods.

Our contributions are listed as follows.

o Itis a weak part proposal generation method by capturing
pose variation among objects, which can obtain better part
segmentation.

« A new segmentation model is proposed by including
cosegmentation, part segmentation, and part label match-
ing, which can segment local part proposals from multiple
images.

The paper is organized as follows. We present related work
in Section II. The proposed method, including energy design,
energy minimization, and detailed algorithm is introduced in
Section III. Section IV displays the results of our method and
the comparison methods. We finally draw the conclusion in
Section V.

II. RELATED WORK

Image segmentation is a clustering process that clusters pix-
els into semantic regions. The existing segmentation methods
can be classified into superpixel level segmentation, object
level segmentation, and part level segmentation according to
the semantic level of segmentation targets.

A. Superpixel Level Segmentation

Superpixel level segmentation is unsupervised manner that
automatically clusters pixels into a set of local smooth regions.

The similarities among adjacent pixels are employed to guide
clustering. The typical methods are spectral clustering based
NCuts segmentation [9], Mean-shift clustering based seg-
mentation [10], edge clustering based UCM superpixel [11],
and K-means clustering based SLIC method [12]. Because
the number of superpixels are much smaller than pixels,
superpixel is mainly used to take place of the pixels in practice
applications in order to release the computational burden.
However, since the similarities among neighboring pixels are
not sufficient to provide semantic priors, the superpixels are
not semantic regions.

B. Object Level Segmentation

Another important research branch is the object level seg-
mentation, which aims at extracting semantic object regions.
The object prior is needed in such segmentation, which is
generally learned from two types of training data: the pixel-
level training data, and the image-level training data. The first
type of data is accurate, and results in the good segmentation,
such as the recent CNN learning based specific object segmen-
tation and objectness evaluation based general object proposal
generation [13]-[16]. Meanwhile, it is hard to provide this type
of data, since the training data is obtained by either manually
drawing or using interactive image segmentation [17], [18],
which are very time-consuming for large scale of images.

Compared with pixel-level training data, the image-level
training data is easier to obtain, which is called weakly super-
vised segmentation [19], [20]. The main idea is to learn the
prior from the similar regions among multiple relevant images.
There are usually two steps: similar region matching, and
object prior learning, which are iteratively performed until the
convergence. In general, the two steps are formulated in a CRF
segmentation framework that is usually minimized by EM
algorithm with a-expansion algorithm. Note that object level
segmentation focus on the whole object region segmentation,
which ignores the semantic local part segmentation.

By seeing the discrimination ability of local region
and their spatial structure in object region representation,
Zhang et al. in [21] propose an excellent weakly-supervised
semantic segmentation framework by exploiting spatial struc-
ture cue from image-level labels. In the framework, the local
regions are first represented by graphlets structure [22]. Then,
three cues such as image level label, global spatial layout and
geometric context are combined in the manifold embedding
to discover the discriminative spatial structure. Based on
the results of manifold embedding, normalized cut based
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segmentation is finally employed to obtain the semantic
regions. Zhang et al. further extend the framework by con-
sidering feature contributions and object region relationships
in [23]. Patch alignment and Bayesian network are used, and
better results are obtained. The framework by Zhang et al.
shows the usefulness of spatial structure in capturing local
region relationships. Meanwhile, our method is different from
the method by Zhang et al. The main difference is that our
targets are the local part proposal regions, while the targets
of the methods [21], [23] are the semantic object regions.
Therefore, they are still object-level segmentation rather than
part-level segmentation.

C. Part Level Segmentation

Local part and their structure have been widely used in
many high-level object detection, recognition and understand-
ing tasks. In the part level segmentation, two aspects need
to be considered: learning the multiple part prior models,
and measuring the part relationships, which makes the part
level segmentation more difficult than object level segmen-
tation. The existing part segmentation methods focus on
supervised manner, i.e., learning the part prior models and
part structure from accurate training data, and then apply-
ing them to accomplish part segmentation. For example,
Luo er al [5] propose a Deep Decompositional Network
to segment local parts of pedestrian. Three layers such as
occlusion estimation layers, completion layers, and decom-
position layers are carefully designed to directly obtain the
label map. Wang and Yuille [6] propose a semantic part
segmentation model by using compositional model to describe
the relationships among parts. The latent SVM is employed to
learn the parameters of the model and is used to accomplish
the model inference with the dynamic programming. The
results show an improvement compared with object level
segmentation methods. Wang et al. [7] intend to obtain both
the object and part segmentation with the concept of semantic
compositional parts (SCP). The segmentation is performed in
a novel fully connected conditional random field model with
the SCP potentials learned from FCN network. Note that these
methods rely on the accurate learning of the part prior models
and part structures, which are fully supervised methods.

Recently, Krause et al. [4] try to automatically generate
part annotations by only given the bounding box of the
object. Compared with the above fully supervised methods,
it is weakly supervised manner. The method first performs
cosegmentation to obtain the object regions, and then align
them to generate the parts. However, since it is difficult
to determine the part regions without any part annotations,
the method instead generates diverse set of part candidate by
random sampling, which expects to be remedied by learning
the discriminative parts in the following object recognition
tasks. Here, we try to generate the part proposals by capturing
the pose variations.

D. Cosegmentation

Another related work is cosegmentation, which assumes that
a common object is contained in each image, and segments
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object by extracting similar regions among images. Although
many cosegmentation methods have been proposed, such as
single class cosegmentation [24], [25], multiple class coseg-
mentation [26], [27], multiple group cosegmentation [28],
noise image based cosegmentation, and RGBD cosegmenta-
tion [29], these methods focus on object region segmentation,
which are not part level segmentation. Compared with coseg-
mentation, our method tries to obtain local part regions, which
is a more detailed and difficult task.

II1. THE PROPOSED METHOD

In this section, we introduce our method by first illustrat-
ing the label assignment based problem formulation. Then,
our energy function consisting of four terms are introduced.
Finally, the model minimization is presented based on three
sub-minimization problems: cosegmentation, part generation,
and part assignment.

A. The Problem Formulation

Given multiple images I = {[y,---,I,} with number n,
a common object is contained in each image /;. We denote
the object regions as S = {S1,---, S»}. Each object region
S; consists of N local parts, i.e., S; = {P;1,---, P;ny}. Based
on the assumption that the object and their parts are similar
among images, our task is to obtain the object part set S from
the multiple images according to their similarity consistency
and shape variations. For simplicity, we assume the images
have the same size with the same number of pixels m.

We formulate the part-level segmentation problem as
label assignment problems. Specifically, denoting C =
{Co, C1,---, Cy} as the background label and the part labels,
every pixel pj; in each image I; is assigned a label /;; € C that
represents its part classes. By denoting L; = {li1, -, lim} as
the label set for I;, and L = {L,---, L,} as the label set
of all images, we formulate the part segmentation problem
by searching L* € Qp that best fits the semantic part
segmentation, which can be represented as

L* = in E(L 1
argLnelglL (L) (1)

where Qp is the domain of L, E(L) is the energy function
measuring the fitness between L and image regions. A small
energy function indicates a good label assignment.

There are two challenges in modeling (1): the design of
energy E (L), and the energy minimization. One the one hand,
the energy E designed from weak image level tags should
efficiently evaluate the fitness between L and semantic parts.
On the other hand, easy minimization can be deduced from the
energy to obtain global or approximation solution. Here, our
energy is designed from shape matching by four terms: sin-
gle image segmentation, multiple image cosegmentation, part
consistency and part structure consistency. The energy mini-
mization is accomplished by three sub-optimization problem:
cosegmentation minimization, NCuts minimization and graph
matching minimization. We next detail our energy design and
the corresponding energy minimization, respectively.
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E) and part structure consistency Ej,, respectively.

B. The Energy Function Design

Our energy function is designed by four terms, which can
be represented as:

E=Es+Ec+Ep+Ej @

where E; is the segmentation evaluation in each image,
which makes the foreground to be different from the back-
ground. E. is the cosegmentation evaluation, which measures
the similarity among foregrounds, and constraints the object
region to be similar. The first two terms can be concluded as
cosegmentation terms. E, is the part consistency evaluation
among images, which enforces the similarity of parts. Ej is
the part structure consistency, which measures the consistency
of part structure. Fig. 3 displays an example to illustrate our
energy design. Note that the last two terms are related to part,
and we name them as part terms.

1) E;: We design E; by pixel consistency of the foreground
and background, which is the classical energy of single image
segmentation model. Here, Markov Random Field segmenta-
tion model is employed for Es. Given an image [; and its
label set Ly, the background pixels and foreground pixels are
denoted as By = {pikllxi = Co} and Fx = {pkilli # Co},
where Ii; is the label of pixel pg;. Then, we evaluate the label
Ly by the data term and pairwise term, which is represented
by

E} =

2

|:P(Pki 10kF)o(lki # Co)
Dki €Q

+ P(piilOk)o(li = Co)}

o2

(pripr))EN

sk (Pki» Pkj)OUki 7 lij) 3)

where E} is the energy for image Ir, € is the pixel domain
of image Iy, Oxr and Gxp are parameters of the foreground
and background models, which is learned from F; and By
by Mixture Gaussian Model. P (py;|0kF) is the probability of
pixel pi; under foreground model. A large value indicates a
good consistency of the pixel and the region. () = 1 if -
is true. Otherwise, it is zero. The first term is also known
as data term. wg, is the similarity matrix of pixels in each
single image I;. A is the 3 x 3 neighboring relationship.

Part Part Structure
Vs Vs

Part Part Structure
E » E,

An illustration of our energy design. There are four terms, i.e., single image segmentation E, multiple image cosegmentation E., part consistency

The second term (pairwise term) punishes the label changes
among neighboring pixel unless there are very large color
variations.

Based on (3), we define E as the sum of E; for all images,
which can be represented as

n
E, = Z exp(—Ey)

k=1

“)

2) E.: We use E. to enforce the foreground similar among
images, which is the global term in cosegmentation. Given
a pair of images Iy and I, and their labels are Ly and L,,
we first obtain the foreground regions F; and F, from the
images by the labels. Then, we define the foreground similarity
of Iy and I, by

Ep, = d(f(Fo), f(F)) &)

where f is the feature extraction function of region, d is the
Euclidean distance between the features. Similar features have
small value of E,fr. Here, we use shape context feature [8] as
f in order to capture the mid-level features. It is seen that E},
forces the foreground to be similar in shape.

By considering the multiple images, we define E¢ by
summing up Ej, of all image pairs, which is represented as

Ec=) > "Ef. = > > d(f(F), f(F))

k=1 r=1 k=1 r=1

(6)

3) Ep: Ej is to evaluate the part consistency, which is
defined by the assumption that there are pixel level matching
between image pairs (Ix, I,). A matching example is shown
in Fig. 4, where the match is performed based on the shape
variation matching, and each pixel in /; (the first image) has
a match pixel in /. (the second image). Based on the match,
the label energy E ,fr for I} and I, is defined by:

- 3 o=
pi€y
+ > Neut@d(A(pi). Ap))) -0 #1;) ()
(pi»pj) €Nk

where, [; € L i§ the label of p; € Iy, p; € I is the match
pixel of p; and [; € L, is its label, A(p;) is the shift vector
of p; defined as v(p;) —v(p;), where v(p) = (xp, yp) is the
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Fig. 4. An examples of the region matching. (a)(b): Two images containing the region of object “Cow”. Each pixel in the first object region has a matched
pixel in the second object region, as the lines in the images. Based on the matching, the pixels within a part region have the same matching shifts, while the

pixels of different part regions have very large shift, as shown in (c).

Fig. 5. Some examples of the shift maps obtained by our method. The shift
value is represented by the color. It is seen that the color of the parts are
different, which demonstrates the effectiveness of our method.

vector of p based on its location. It describes the shift of pixel
pi as shown in Fig. 4(c). By considering the shift vectors of
all pixels in I, we can obtain a shift map M;, where the value
of each pixel is the shift vector, i.e., Ms(p;) = A(p;). Fig. 5
displays some shift maps, where five original images and their
shift maps are shown. It is seen that shift map distinguishes
the local parts in these images, which guarantees the following
part proposal generation.

In the last term of (7), d(A(p;), A(p;)) is the distance
between the shift vectors, which describes the matching shift
consistency between image pairs. Large value indicates a large
change of shift, and corresponds to the border of part regions.
Ncut(d(A(pi), A(pj))) is the cutting evaluation among dif-
ferent label regions 6(/; # [;), which prefers to segment
local parts along the large variations of d(A(p;), A(p;)).
We formulate it as the Normalized cut defined in [9]. It is
seen that because the part always keeps fixed among images,
pixels within one part have similar A. Meanwhile, the pixels
with different part have large differences of A due to the pose
variation. Hence, the second term aims at dividing object along
with pixels with large changes of A.

In (7), the first term is the number of the matched pixels
with the same labels. Larger value of this term indicates a
good part consistency. The second term is the cost by labelling
neighboring pixels. It enforces the label to be consistency
among neighboring pixels. Once there is label change, it hopes
to have large matching shifts, i.e., they come from different
parts. It is seen that the two terms in (7) are similar to the
data term and pairwise term in MRF segmentation. However,
the first term is based on the part matching, which is a global
cue. Furthermore, the second term is based on the matching
shift, which is different from the pixel color variations. Hence,

a(si,sh)
4

d(g(sf,S5f), g(S1, 8]

Fig. 6.  An example to illustrate the fourth term Ej; of part structure
consistency. g is the part relationship by the spatial distance, and d is the
part structure consistency evaluation, which is based on the relationships of
all part pairs.

the regions can be segmented into several segments even if the
pixels have same colors.

Based on (7), we set the energy function £, by considering
all image pairs, i.e.,

E,;=ZZ[— D o=l

keQreQ Pi€Qk

+ Z Ncut(d(A"(pi), A"(p))) -6 # lj)]
(pi-p)eN
(®)

where A”(p;) is the matching shift vector of p; € Iy based
on image I,.

4) Ej: Ej evaluates the part structure consistency. We con-
sider two aspects: part spatial relationship, and the relationship
consistency. Given an image pair (I, I,) with labels (Lg, L;),
E,’(’r is defined as,

Ep =" d(g(Sf, S}), (5], 5)) ©)

i=1 j=1

where Sf‘ is the region of label L; in image I, g(S{‘, S;?) is the
spatial relationship between the ith and jth regions in image
I, which is represented by function g. d(g (Sf, Sf), g(s7, S;))
is the distance between a pair of relationships, which measure
the consistency of part pair matching. An example is shown
in Fig. 6. The final structure consistency is the sum of all part
pairs.
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By considering all image pairs, Ej, is defined as

Ehzzz[ZZd(g(sf,sf),g(S{, ;))} (10)

k=1r=1"i=1 j=1

It is seen that formula (9) is the consistency of part spatial
relationships (“Head”-“Body” to “Head”-“Body”), which is
the second order matching. Note that the first term in (7) is
the part similarity (“Head” to “Head”), which is the first order
matching. Hence, by combing the two terms, it is a two-order
graph matching problem. Only the labels with similar features
among the same label region and the same spatial structure in
terms of high-order graph matching will lead to small values.

By introducing the terms (4), (6), (8), and (10) into (2),
we obtain the final energy function. We next introduce the
energy minimization.

C. The Energy Function Minimization

Because our energy contains nonlinear terms such as E,
and is also formed by many sums of multiple images, it is
difficult to globally minimize the energy. Instead, we pursue
approximate solution by diving original problem into three
sub-minimization problems, i.e., cosegmentation problem, part
generation problem and region matching problems.

1) Cosegmentation Problem: We combine the first two
terms E; and E. to form the cosegmentation problem, which
can be represented as:

Ec = E; + E,
=D Eqi+ Y, d(f(F),f(F)) (D
ieQ (i,/)eQxQ

This is classical cosegmentation problem, but with diffi-
cult shape similarity constraints. Here, we use the strategy
in [30], [31] for the minimization. The main idea is to first
consider all the segments that satisfying the first term E; by
object proposals, and then select regions that best satisfying
E; to be the final results. The minimizing of the second term
can be solved by using a fully connected graph to repre-
sent the relationships of the proposals, and then performing
the belief propagation on the graph to score the common
regions, as used in [31]. By considering the computational
cost of the fully connected graph, we only construct the graph
based on neighboring images, and achieve the common object
segmentation by dynamic programming [30]. In our method,
the object proposals are generated by [32]. Since it obtains the
bounding boxes rather than regions, we perform Grabcut on
the bounding boxes to obtain region proposals. In the graph
generation, shape feature in [8] is used for the edge weight
calculation.

2) Part Generation Problem: We treat the second term in
E, as the part generation sub problem, which is represented
as

Epzzz[ D Neurd(A"(pi), A (p))

keQreQ (p;,p_/)eM

ol # lj)i| (12)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 8, AUGUST 2017

Algorithm 1 Weakly Supervised Local Part Segmentation
) 1 n}

Input: Multiple Images [ = {I3, - -
Initialize: The number of parts [V
Output: Local Part L = {L;,---, L, }

% Object Proposal Generation
For i =1 ton do

1) Generation windows of proposals for I; by [32].

2) Generating object regions from windows by GrabCut.
End For

% Object Cosegmentation

1) Constructing graph to representing the similarity rela-
tionships among proposals by [30] and shape context
feature [8].

2) Obtaining common object regions based on the graph
by dynamic programming.

% Shape Matching
For All (i,7),,j € [1,n], i # j do
1) Performing shape matching on the foregrounds F;, and
Fj of (IZ,IJ) by [8]
2) Generating shift map based on the pixel matching by
Section III-C2.

End For

% Part Generation
For i =1 ton do

o Generating part regions for I; by (14) using the method
in [9].
End For

% Part Label Matching

o Obtaining the matched part labels by solving the problem
in (16).

= Z[ z ZNcut(d(Ar(pi), A" (pj))

keQ ™ (pi,pj)eN; reQ
0l #lj):| (13)

To solve this problem, we divide the problem into many sub-
problems based on each image, and forms the sub-problem as,
I* = argmin [ D, Neut@(B(pi), Ap))) -3 # l,-)}

(pi.pj)eNk
(14)

where A(p;) = %Z’:zl A"(p;) is the average shift of all
images. In other words, because there are multiple images,
and each image will result in a shift map, we average these
shift maps to form the final one. It is seen that the sub-
problem in (14) is the classical normalized cut segmentation
problem with the part number n, which can be solved by
spectral techniques. Based on (14), we minimize (12) by
solving these sub-problems in (14) one by one.
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Our part proposal segmentation results on PASCAL 2008 part datasets by setting Ny = 4 and various number of local part N. The original image is

shown in the first row. The segmentation results with N = 3 to 8 are displayed from the second row to the seventh row, respectively. The bottom row shows

the results by N = 1, which are the cosegmentation results.

3) Local Part Matching: The third step is to combine the
first term in (8) and (10), and forms a two order graph
matching problem, which is represented as

I* = argmlinZZ[— z 5l =1)

keQreQ Di €%
+2.2 [ZZd(g(S,-", $5). 887, s;»} (15)

k=1r=1"i=1 j=1

and is equal to the problem as

S iyem MY J)

! = arg max m _
. (kzr:) g M5 G ) — M5 G, )

(16)

where M{" (i, j) is the matching scores between the labels /;
and [;, which is based on the matching of image pairs (I, I,),
and is defined as

3 et 90 €17)

17
N, a7)

MG, j) =

where lf is the pixels of Iy in the region l;, p’ € I, is the
matched pixel of p € lf‘, Njp is the number of pixels in lf‘ .

Meanwhile, M§ (i, j) is the spatial distance between region
pair (S;, ;) in image /i, and |M£‘(i, J)—M; (i, j)| is the spa-
tial relationship consistency evaluation. Small values indicate
a good consistency. It is seen from (16) that the region pairs
with good label match will have many matching pixels, and
lead to large value of M{". In addition, the consistent part
region labels will have similar M»>, and result in small value
of denominator. Hence, the best region label has the largest
value of the fraction. In this paper, we use gradient descent
to minimize the problem in (16) with grid based initial value
setting. Note that when the number of part is small, traversal
method can also be used to search global solution with fast
speed.

After continuously performing the three sub-minimization
problems, we finally obtain the approximate solution of our
model. Algorithm 1 shows the process of our model.

IV. EXPERIMENTAL RESULTS

In this section, our method is verified by subjective and
objective results. A part dataset constructed from three image
datasets such as PASCAL 2010 part datasets, Caltech-UCSD
Birds dataset, Cat-Dog dataset, and one video dataset such as
UCF Sports Actions dataset, is used for the verification.
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A. Implementation Details

The shift map My is comprised of vectors, which is repre-
sented by two channels: length and angle. Because the shift
vectors gradually change based on the shape context match-
ing, the value distances of neighbor pixels are small, which
leads to unsuccessful segmentation. Hence, we refine the two
channels by replacing the value into the class centers, which
are obtained by k-means algorithm. Denoting the number of
classes in k-means as N, we adjust N; to obtain multiple
layer of proposals. Meanwhile, the number of part N is also
adjusted to obtain the proposals. Hence, our model adjusts
two parameters N and N; for the proposal generation. In this
paper, we empirically set Ny = 4 and Ny = N, and N € [3, 8],
with the consideration of computational cost.

B. Subjective Results

Some part proposal generation results are shown
in Fig. 7, 8, 9 and 10 for the four datasets. These results
are obtained based on Ny = 4. The original image is shown
in the first row. The segmentation results with N = 3 to
8 are displayed from the second row to the seventh row,
respectively. The bottom row shows the results by N = 1,
which are the cosegmentation results. We can see from the
results of N 1 that the common objects with similar
shapes can be segmented from these images, such as “Cow”
in Fig. 7, and “Girl” in Fig. 10. This indicates that our
cosegmentation guarantees the following part segmentation.

Furthermore, by seeing each row, it is seen that part propos-
als have been matched well, although there may have noise
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Our part proposal segmentation results on Caltech-UCSD Birds dataset. Each rows are the same to Fig. 7.

regions caused by cosegmentation. For example, in Fig. 7, each
part of “Cow” has been matched in the row of N = 6, and
the matches keep spatial consistency, such as the relationship
of “Head” and “Leg”. These results indicate the effectiveness
of our spatial consistency constraints in Ej,.

The results also show that the local part can be represented
by one of segmentation layers. For example, the “Head”
regions are extracted in layers of N = 6 and N = 5 in
the Fig. 8 and Fig. 9, respectively. Meanwhile, the “Tails”
are segmented in both the layers of N = 8 for the two set of
images. This indicates the fact that shape variation can provide
part regions.

It is also seen that there are failure cases in these segmenta-
tion results, such as the sixth image of “Cat” in Fig. 9, and the
last segmentation results in Fig.10. We also display other more
failed segmentation results in Fig. 11, where three images and
their segmentation are displayed. The unsuccessful segments
are mainly caused by the initial object segmentation. When
the object segmentation is inaccurate, wrong matching will be
performed, which will lead to failed segmentation. Note that
when most of the object regions are successfully extracted,
good segmentation can also be obtained, since the failed shape
matching can be corrected by these success segmentation.

C. Objective Results
We next verify our method based on the objective value.

The IOU value is used in our experiment, which is defined

as % where F and G are the regions of the segment and
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Fig. 9. Our part proposal segmentation results on Cat-Dog datasets. Each rows are the same to Fig. 7.

the groundtruth, respectively. A large IOU value indicates a
good segmentation. Since there are multiple images and parts,
we evaluate the results based on the regions of each part. Given
a part, we have n groundtruth regions. Then we select one label
regions, and calculate their average IOU values compared with
the groundtruth regions, and use the largest value as the IOU
value of this part. The final object value is the average of all
parts. We can see although the segmentation results are only
one label regions, the IOU value can still be obtained for the
evaluation. Hence, we can compare our method with both part
level and region level methods.

We show our objective results in the last row of Table I,
where the IOU values of the classes are shown. The average
IOU values are displayed in the last column. It is seen from the
results that the IOU value is 0.186, which is low. This is caused
by the fact that part segmentation is a very challenging task
with the needs to obtain consistent part regions among images.
It is also seen that the value of Pascal 2010 dataset is lower
than the other datasets, which is caused by the large object
variations among images and the complicated backgrounds.

The results with setting Ny = 4 and Ny = N are also
displayed for comparison. It is seen that the proposal results
are affected by the setting of N;. In addition, the average
IOU value of Ny = N is 0.179, which is better than Ny = 4
of 0.168. But their combination obtains the average IOU value

of 0.186, which is the best one among the results.

We next display the average IOU values along with N
in Fig. 12, where x-axis is the part number, and y-axis is the
average IOU values. It is seen from the curve that the average
IOU values become larger along with N, which is caused by
the fact that there are some small part regions, such as “Ear”
and “Eye”, and the set of large part number can obtain more
detailed regions that covers these small part, and leads to larger
average IOU values.

We also compare our method with four existing methods,
including weak object level segmentation [30], weakly super-
vised part segmentation [4], interactive cosegmentation [33]
and interactive binary region segmentation [34]. The codes
of these methods publicly released by the authors are used.
The method in [30] is a cosegmentation method that extracts
similar shape common regions from multiple images. The
method in [4] is a recent part segmentation method that
extracts part regions based on average sampling. In the imple-
mentation of [4], we replace the CNN feature to the shape
feature for simplification, since authors indicate the robustness
of the method to feature selection. Furthermore, since the
results of [4] are windows instead of regions, we use the
windows of segment and groundtruth for calculating the IOU
value. The method in [33] designs a cosegmentation model
by three cues such as user interaction, local smooth and



4028

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 8, AUGUST 2017

{1 | ‘
r
N ’ W e
N=3 v 4 LN i}
= =
. \
N=7 4 LN 2
< i p
P [
N BN : A
N=8 < N R A ’
Fig. 10. Our part proposal segmentation results on UCF sports action dataset. Each row is the same to Fig. 7.
TABLE I
THE OBJECTIVE VALUES OF OUR METHODS, AND THE COMPARISON RESULTS
PASCAL 2010 Part Dataset Caltech-UCSD Birds
Method Bird Cat Cow Dog Horse Person Sheep  Albatross Cowbird  Bunting
Ns =4 0.089 0.097 0.112 0.126 0.066 0.112 0.091 0.406 0.259 0.215
Ng=N 0.109 0.112 0.117 0.137 0.073 0.123 0.101 0.365 0.256 0.234
[30] 0.064 0.053 0.049 0.047 0.026 0.032 0.043 0.143 0.144 0.128
[33] 0.118 0.120 0.097 0.069 0.089 0.039 0.093 0.039 0.119 0.141
[34]+Part 0.530 0.704 0.658 0.641 0.651 0.748 0.699 0.745 0.625 0.686
[4] 0.099 0.135 0.115 0.141 0.067 0.106 0.105 0.272 0.267 0.233
ours+Combination 0.111 0.113 0.124 0.142 0.075 0.128 0.106 0.407 0.273 0.238
Cat-Dog Dataset UCEF Sports Actions
Method Bombay  Abyssinian  bulldog  Run-sidell  Swing04  Average
Ng =4 0.165 0.197 0.198 0.208 0.180 0.168
Ns =N 0.182 0.231 0.222 0.235 0.195 0.179
[30] 0.080 0.080 0.080 0.076 0.098 0.076
[33] 0.086 0.100 0.029 0.021 0.040 0.080
[34]+Part 0.513 0.731 0.324 0.438 0.796 0.633
[4] 0.172 0.222 0.170 0.287 0.241 0.176
Ours+Combination 0.185 0.233 0.223 0.236 0.200 0.186

foreground consistency. The model is converted to constrained
quadratic programming problem, with a simple iterative solu-
tion. By a few of user interactions, better segmentation results
are obtained. The method in [34] is a user-interaction based
binary segmentation model. Three constraints such as shape
convexity, user-defined hard constraint and other standard
constraints are considered. The model is efficiently minimized

by trust region approach. Meanwhile, we observe that such
model can segment multiple part regions by separately scrawl-
ing foreground and background seeds for each part due to
the shape convexity constraint. Hence, we simply change
the interaction-based binary segmentation [34] to interaction-
based part segmentation by implementing the method in [34]
for each part separately, and name it as [34]4Part.
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Fig. 11. The original images and the failed segmentation results, which is
caused by the unsuccessful object region extraction.
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Fig. 12. The average IOU values by varying the part number N. It is seen
that the average IOU values become larger along with N.

The objective results by the comparison methods are
shown in Table I. It is seen that the average IOU value by
[34]+Part (0.633) is obviously larger than our method (0.186)
and the comparison methods due to the consideration of
part-level segmentation and user interaction. Meanwhile, our
method outperforms object-level segmentation methods [33]
(0.080) and [30] (0.076) due to the fact that cosegmentation
obtains object-level regions rather than part-level regions.
Furthermore, the results of [4] is 0.176, which is bet-
ter than our results with Ny = 4. Meanwhile, our final
result (0.186) is larger than the method in [4], which
demonstrates the usefulness of shape variation in part proposal
segmentation.

D. Discussions

Our method is a weakly supervised part proposal generation
method, which aims at segmenting part regions from a set of
images with image-level labels. This is a new research topic
in weakly supervised segmentation. Although a little bit of
weakly supervised part segmentation methods [4] have been
proposed recently, the basic problem on how to efficiently
define a part region is still underdeveloped. Compared with
the existing weakly supervised part segmentation methods,
we design the part-level segmentation model in a new view of
pose variation that is a different and efficient cue for discover-
ing part regions. Furthermore, our method is different from our
previous cosegmentation work [30] that is used in our model.
The difference is that the work in [30] aims at extracting
common objects from multiple images, which first describes
the relationships of the regions by digraph, and then formulates
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cosegmentation as shortest path problem. But our method aims
at segmenting more detailed part regions, which is a more
difficult problem. In addition, our previous work [30] is used
here to simplify the minimization of the cosegmentation term
of our model. Note that other cosegmentation minimizations
such as belief-propagation-based method [31] can also be used
to replace our previous work [30].

In our model, as the usual assumption in common object
segmentation [1], [29], [35], we assume that similar objects
share similar feature f, such as the mid-level shape feature
used in our method. The successful segmentation of similar
objects can be guaranteed when the feature f describes the
object similarity well. However, when the objects are different
greatly by f, the foreground consistency term E. in (5) cannot
correctly evaluate the similarities of regions. Wrong segmen-
tation will be obtained. Note that these wrong segmentation
results can be avoided by using more effective feature. We will
study more robust and adaptive feature description such as
deep learning based feature extraction in the future to further
improve our model.

V. CONCLUSIONS

In this paper, a weakly supervised part region segmen-
tation method is proposed. Object pose variations are cap-
tured to obtain the fixed regions, which is then used to
generate the local parts. Four aspects, such as shape feature
based cosegmentation, shape matching based variation cap-
ture, NCuts based part proposal generation, and second order
graph matching based part label matching, are considered.
The four aspects are combined to form our energy function,
which is minimized by three sub-minimization steps, including
cosegmentation, NCuts segmentation and label matching. Our
method is verified on three image datasets and one video
dataset. The experimental results demonstrate the effectiveness
of the proposed method.
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